We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be a compact Kähler manifold, and let $L \rightarrow X$ be a holomorphic line bundle equipped with a singular metric h such that the curvature $\mathrm {i}\Theta _{L,h}\geqslant 0$ in the sense of currents. The main result of this paper is the vanishing of $H^n(X,\mathcal {O}(\Omega ^p_X\otimes L)\otimes \mathcal {I}(h))$ for $p\geqslant n-\operatorname {nd}(L,h)+1$, which generalizes Bogomolov’s vanishing theorem and Watanabe’s result.
In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a reductive group scheme $G$ over a valuation ring $V$ with fraction field $K$, a $G$-torsor over $V$ is trivial if it is trivial over $K$. This result is predicted by the original Grothendieck–Serre conjecture and the resolution of singularities. The novelty of our proof lies in overcoming subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–Sansuc's case of tori. Then, taking advantage of techniques in algebraization, we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi subgroups and use the integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case, in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In the last section, by using extension properties of reflexive sheaves on formal power series over valuation rings and patching of torsors, we prove a variant of Nisnevich's purity conjecture.
We study the Hodge and weight filtrations on the localization along a hypersurface, using methods from birational geometry and the V-filtration induced by a local defining equation. These filtrations give rise to ideal sheaves called weighted Hodge ideals, which include the adjoint ideal and a multiplier ideal. We analyze their local and global properties, from which we deduce applications related to singularities of hypersurfaces of smooth varieties.
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions and derive applications regarding the local cohomological dimension, the Du Bois complex, local vanishing and reflexive differentials associated to Z.
We prove the Kawamata–Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic $p>5$. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic $p>5$ are rational. We show that these theorems are sharp by providing counterexamples in characteristic $5$.
We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron–Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron–Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric
$\omega $
such that
$(T_X,\omega )$
is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on
$T_X$
.
Let $M$ and $N$ be two compact complex manifolds. We show that if the tautological line bundle ${\mathcal{O}}_{T_{M}^{\ast }}(1)$ is not pseudo-effective and ${\mathcal{O}}_{T_{N}^{\ast }}(1)$ is nef, then there is no non-constant holomorphic map from $M$ to $N$. In particular, we prove that any holomorphic map from a compact complex manifold $M$ with RC-positive tangent bundle to a compact complex manifold $N$ with nef cotangent bundle must be a constant map. As an application, we obtain that there is no non-constant holomorphic map from a compact Hermitian manifold with positive holomorphic sectional curvature to a Hermitian manifold with non-positive holomorphic bisectional curvature.
We extend results on asymptotic invariants of line bundles on complex projective varieties to projective varieties over arbitrary fields. To do so over imperfect fields, we prove a scheme-theoretic version of the gamma construction of Hochster and Huneke to reduce to the setting where the ground field is $F$-finite. Our main result uses the gamma construction to extend the ampleness criterion of de Fernex, Küronya, and Lazarsfeld using asymptotic cohomological functions to projective varieties over arbitrary fields, which was previously known only for complex projective varieties. We also extend Nakayama’s description of the restricted base locus to klt or strongly $F$-regular varieties over arbitrary fields.
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$. We show that if a line bundle $L$ is $(n-1)$-ample, then it is $(n-1)$-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
Given an $n$-dimensional variety $Z$ with rational singularities, we conjecture that if $f:Y\rightarrow Z$ is a resolution of singularities whose reduced exceptional divisor $E$ has simple normal crossings, then
We prove this when $Z$ has isolated singularities and when it is a toric variety. We deduce that for a divisor $D$ with isolated rational singularities on a smooth complex $n$-dimensional variety $X$, the generation level of Saito’s Hodge filtration on the localization $\mathscr{O}_{X}(\ast D)$ is at most $n-3$.
In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,\mathfrak{m})$ be a local ring; we prove that if $R_{\text{red}}$ is Du Bois, then $H_{\mathfrak{m}}^{i}(R)\rightarrow H_{\mathfrak{m}}^{i}(R_{\text{red}})$ is surjective for every $i$. We find many applications of this result. For example, we answer a question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay property of Du Bois singularities. We obtain results on the injectivity of $\operatorname{Ext}$ that provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000), 583–600] in characteristic $0$. These results can also be viewed as generalizations of the Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities, which are characteristic-$0$ analogs and generalizations of results of Singh–Walther and answer some of their questions in Singh and Walther [On the arithmetic rank of certain Segre products, in Commutative algebra and algebraic geometry, Contemporary Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005), 147–155]. We extend results on the relation between Koszul cohomology and local cohomology for $F$-injective and Du Bois singularities first shown in Hochster and Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense $F$-injective type deform.
We show that any Kawamata log terminal del Pezzo surface over an algebraically closed field of large characteristic is globally $F$-regular or it admits a log resolution which lifts to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo surfaces of large characteristic.
Let $X$ be a compact Kähler manifold and let $(L,{\it\varphi})$ be a pseudo-effective line bundle on $X$. We first define a notion of numerical dimension for pseudo-effective line bundles with singular metrics, and then discuss the properties of this numerical dimension. Finally, we prove a very general Kawamata–Viehweg–Nadel-type vanishing theorem on an arbitrary compact Kähler manifold.
We study products of irreducible theta divisors from two points of view. On the one hand, we characterize them as normal subvarieties of abelian varieties such that a desingularization has holomorphic Euler characteristic $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1$. On the other hand, we identify them up to birational equivalence among all varieties of maximal Albanese dimension. We also describe the structure of varieties $X$ of maximal Albanese dimension, with holomorphic Euler characteristic $1$ and irregularity $2\dim X-1$.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
This paper introduces the notion of a derived splinter. Roughly speaking, a scheme is a derived splinter if it splits off from the coherent cohomology of any proper cover. Over a field of characteristic 0, this condition characterises rational singularities, as suggested by the work of Kovács. Our main theorem asserts that over a field of characteristic p, derived splinters are the same as (underived) splinters, i.e. schemes that split off from any finite cover. Using this result, we answer some questions of Karen Smith concerning the extension of Serre/Kodaira-type vanishing results beyond the class of ample line bundles in positive characteristic; these are purely projective geometric statements independent of singularity considerations. In fact, we can prove ‘up to finite cover’ analogues in characteristic p of many vanishing theorems known in characteristic 0. All these results fit naturally in the study of F-singularities, and are motivated by a desire to understand the direct summand conjecture.
Given a normal variety Z, a p-form σ defined on the smooth locus of Z and a resolution of singularities , we study the problem of extending the pull-back π*(σ) over the π-exceptional set . For log canonical pairs and for certain values of p, we show that an extension always exists, possibly with logarithmic poles along E. As a corollary, it is shown that sheaves of reflexive differentials enjoy good pull-back properties. A natural generalization of the well-known Bogomolov–Sommese vanishing theorem to log canonical threefold pairs follows.
For a smooth variety proper over a curve having a fibre with isolated ordinary quadratic singularities, it is well-known that we have the vanishing cycles associated to the singularities in the étale cohomology of the geometric generic fibre. The base-change by a double cover of the base curve ramified at the image of the singular fibre has singularities corresponding to the singularities in the fibre. In this note, we show that in the even relative-dimensional case, there exist elements of the bivariant Chow group of the base-change with supports in the singularities and hence their images in the bivariant Chow group with supports in the special fibre and that the usual cohomological vanishing cycles are obtained as their images by a natural map, a kind of “cycle map” so that the elements in the bivariant Chow groups can be regarded as the vanishing cycles. The bivariant Chow group with supports in the special fibre has a ring structure and the natural map is a ring homomorphism to the cohomology ring of the geometric generic fibre. Also discussed is the relation of the bivariant Chow group with supports in the special fibre to the specialization map of Chow groups.
For the classical groups, Kraft and Procesi have resolved the question of which nilpotent orbits have closures that are normal and which do not, with the exception of the very even orbits in $D_{2l}$ that have partitions of the form $(a^{2k}, b^2)$ for $a\,{>}\,b$ even natural numbers satisfying $a k\,{+}\,b\,{=}\,2 l$.
In this paper, these orbits are shown to have normal closure.