We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of$\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
We present a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a semidihedral $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a $p$-permutation bimodule (where $p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups G for which the integral group ring ℤG has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condition for SFC and use this to show that ℤG has SFC provided at most one copy of the quaternions ℍ occurs in the Wedderburn decomposition of the real group ring ℝG. This generalises the Eichler condition in the case of integral group rings.
We present several results on the connectivity of McKay quivers of finite-dimensional complex representations of finite groups, with no restriction on the faithfulness or self-duality of the representations. We give examples of McKay quivers, as well as quivers that cannot arise as McKay quivers, and discuss a necessary and sufficient condition for two finite groups to share a connected McKay quiver.
Linckelmann and Murphy have classified the Morita equivalence classes of p-blocks of finite groups whose basic algebra has dimension at most
$12$
. We extend their classification to dimension
$13$
and
$14$
. As predicted by Donovan’s conjecture, we obtain only finitely many such Morita equivalence classes.
We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.
We examine situations, where representations of a finite-dimensional F-algebra A defined over a separable extension field K/F, have a unique minimal field of definition. Here the base field F is assumed to be a field of dimension ≼1. In particular, F could be a finite field or k(t) or k((t)), where k is algebraically closed. We show that a unique minimal field of definition exists if (a) K/F is an algebraic extension or (b) A is of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension of F. This is not the case if A is of infinite representation type or F fails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups.
(ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group.
We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product $G\times A$, where $A$ is a finite abelian group and $G$ has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
For a group G, a weak Cayley table isomorphism is a bijection f : G → G such that f(g1g2) is conjugate to f(g1)f(g2) for all g1, g2 ∈ G. The set of all weak Cayley table isomorphisms forms a group (G) that is the group of symmetries of the weak Cayley table of G. We determine (G) for each of the 17 wallpaper groups G, and for some other crystallographic groups.
Let $ZB$ be the center of a $p$-block $B$ of a finite group with defect group $D$. We show that the Loewy length $LL(ZB)$ of $ZB$ is bounded by $|D|/p+p-1$ provided $D$ is not cyclic. If $D$ is nonabelian, we prove the stronger bound $LL(ZB)<\min \{p^{d-1},4p^{d-2}\}$ where $|D|=p^{d}$. Conversely, we classify the blocks $B$ with $LL(ZB)\geqslant \min \{p^{d-1},4p^{d-2}\}$. This extends some results previously obtained by the present authors. Moreover, we characterize blocks with uniserial center.
We introduce a new method to study rational conjugacy of torsion units in integral group rings using integral and modular representation theory. Employing this new method, we verify the first Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23). In a second application we show that there are no normalized units of order 6 in the integral group rings of M10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows that the prime graph question has an affirmative answer for all groups having an order divisible by at most three different primes.
We develop a suitable version of the stable module category of a finite group G over an arbitrary commutative ring k. The purpose of the construction is to produce a compactly generated triangulated category whose compact objects are the finitely presented kG-modules. The main idea is to form a localisation of the usual version of the stable module category with respect to the filtered colimits of weakly injective modules. There is also an analogous version of the homotopy category of weakly injective kG-modules and a recollement relating the stable category, the homotopy category, and the derived category of kG-modules.
Malvenuto and Reutenauer (C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra177 (1995), 967–982) showed how the total symmetric group ring ⊕nZΣn could be made into a Hopf algebra with a very nice structure which admitted the Solomon descent algebra as a sub-Hopf algebra. To do this they replaced the group multiplication by a convolution product, thus distancing their structure from the group structure of Σn. In this paper we examine what is possible if we keep to the group multiplication, and we also consider the question for more general families of groups. We show that a Hopf algebra structure is not possible, but cocommutative and non-cocommutative counital bialgebras can be obtained, arising from certain diagrams of group homomorphisms. In the case of the symmetric groups we note that all such structures are weak in the sense that the dual algebras have many zero-divisors, but structures which respect descent sums can be found.
We present an efficient algorithm for the condensation of homomorphism spaces. This provides an improvement over the known tensor condensation method which is essentially due to a better choice of bases. We explain the theory behind this approach and describe the implementation in detail. Finally, we give timings to compare with previous methods.
Let $RG$ denote the group ring of the group $G$ over the ring $R$. Using an isomorphism between $RG$ and a certain ring of $n\,\times \,n$ matrices in conjunction with other techniques, the structure of the unit group of the group algebra of the dihedral group of order 8 over any finite field of chracteristic 2 is determined in terms of split extensions of cyclic groups.
We introduce roots of indecomposable modules over group algebras of finite groups, and we investigate some of their properties. This allows us to correct an error in Landrock's book which has to do with roots of simple modules.
Let $G$ be a finite group. We classify $G$-equivariant flow equivalence of non-trivial irreducible shifts of finite type in terms of
(i) elementary equivalence of matrices over $ZG$ and
(ii) the conjugacy class in $ZG$ of the group of G-weights of cycles based at a fixed vertex.
In the case $G = Z/2$, we have the classification for twistwise flow equivalence. We include some algebraic results and examples related to the determination of $E(ZG)$ equivalence, which involves $K_1(ZG)$.
For each finite group $G$ for which the integral group ring $\mathbb{Z}G$ has only trivial units, we give ring-theoretic conditions for a commutative ring $R$ under which the group ring $RG$ has nontrivial units. Several examples of rings satisfying the conditions and rings not satisfying the conditions are given. In addition, we extend a well-known result for fields by showing that if $R$ is a ring of finite characteristic and $RG$ has only trivial units, then $G$ has order at most 3.