We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
having prescribed mass $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ where a > 0 is a constant, λ appears as a Lagrange multiplier. We focus on the pure L2-supercritical case and combination case of L2-subcritical and L2-supercritical nonlinearities
In this paper, we study the Dirichlet problem for systems of mean value equations on a regular tree. We deal both with the directed case (the equations verified by the components of the system at a node in the tree only involve values of the unknowns at the successors of the node in the tree) and the undirected case (now the equations also involve the predecessor in the tree). We find necessary and sufficient conditions on the coefficients in order to have existence and uniqueness of solutions for continuous boundary data. In a particular case, we also include an interpretation of such solutions as a limit of value functions of suitable two-players zero-sum games.
The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from $\mathbb {R}^n$ to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of $\mathbb {R}^n$—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.
We prove the existence of a ground state positive solution of Schrödinger–Poisson systems in the plane of the form
\[ -\Delta u + V(x)u + \frac{\gamma}{2\pi} \left(\log|\cdot| \ast u^2 \right)u = b |u|^{p-2}u \quad\text{in}\ \mathbb{R}^2, \]
where $p\ge 4$, $\gamma,b>0$ and the potential $V$ is assumed to be positive and unbounded at infinity. On the potential we do not require any symmetry or periodicity assumption, and it is not supposed it has a limit at infinity. We approach the problem by variational methods, using a variant of the mountain pass theorem and the Cerami compactness condition.
The Helmholtz equation
$-\nabla\cdot (a\nabla u) - \omega^2 u = f$
is considered in an unbounded wave guide
$\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$
,
$S\subset \mathbb{R}^{d-1}$
a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction
$x_1 \in \mathbb{R}$
or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies
$\omega$
, we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.
We compare the solutions of two Poisson problems in a spherical shell with Robin boundary conditions, one with given data, and one where the data have been cap symmetrized. When the Robin parameters are nonnegative, we show that the solution to the symmetrized problem has larger convex means. Sending one of the Robin parameters to
$+\infty $
, we obtain mixed Robin/Dirichlet comparison results in shells. We prove similar results on balls and prove a comparison principle on generalized cylinders with mixed Robin/Neumann boundary conditions.
A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps.
The purpose of this paper is to characterize the entire solutions of the homogeneous Helmholtz equation (solutions in ℝd) arising from the Fourier extension operator of distributions in Sobolev spaces of the sphere $H^\alpha (\mathbb {S}^{d-1}),$ with α ∈ ℝ. We present two characterizations. The first one is written in terms of certain L2-weighted norms involving real powers of the spherical Laplacian. The second one is in the spirit of the classical description of the Herglotz wave functions given by P. Hartman and C. Wilcox. For α > 0 this characterization involves a multivariable square function evaluated in a vector of entire solutions of the Helmholtz equation, while for α < 0 it is written in terms of an spherical integral operator acting as a fractional integration operator. Finally, we also characterize all the solutions that are the Fourier extension operator of distributions in the sphere.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
In this paper we characterize the boundedness on the product of Sobolev spaces Hs(𝕋) × Hs(𝕋) on the unit circle 𝕋, of the bilinear form Λb with symbol b ∈ Hs(𝕋) given by
for N ⩾ 4, where 2* : = 2N/(N − 2). The coefficient $Q \in L^{\infty }({\open R}^{N}){\setminus }\{0\}$ is assumed to be nonnegative, asymptotically periodic and to satisfy a flatness condition at one of its maximum points. The solutions obtained are so-called dual ground states, that is, solutions arising from critical points of the dual functional with the property of having minimal energy among all nontrivial critical points. Moreover, we show that no dual ground state exists for N = 3.
In this paper we determine the ${{L}^{1}}\to {{L}^{1}}$ and ${{L}^{\infty }}\to {{L}^{\infty }}$ norms of an integral operator $\mathcal{N}$ related to the gradient of the solution of Poisson equation in the unit ball with vanishing boundary data in sense of distributions.
We investigate the central moments of (regular) hexagons and derive accordingly a discrete approximation to definite integrals on hexagons. The seven-point cubature rule makes use of interior and neighbor center nodes, and is of fourth order by construction. The result is expected to be useful in two-dimensional (open-field) applications of integral equations or image processing.
In this paper a three-step scheme is applied to solve the Camassa-Holm (CH) shallow water equation. The differential order of the CH equation has been reduced in order to facilitate development of numerical scheme in a comparatively smaller grid stencil. Here a three-point seventh-order spatially accurate upwinding combined compact difference (CCD) scheme is proposed to approximate the firstorder derivative term. We conduct modified equation analysis on the CCD scheme and eliminate the leading discretization error terms for accurately predicting unidirectional wave propagation. The Fourier analysis is carried out as well on the proposed numerical scheme to minimize the dispersive error. For preserving Hamiltonians in Camassa- Holm equation, a symplecticity conserving time integrator has been employed. The other main emphasis of the present study is the use of u–P–α formulation to get nondissipative CH solution for peakon-antipeakon and soliton-anticuspon head-on wave collision problems.
We describe our implementation of a parallel fast multipole method for evaluating potentials for discrete and continuous source distributions. The first requires summation over the source points and the second requiring integration over a continuous source density. Both problems require (N2) complexity when computed directly; however, can be accelerated to (N) time using FMM. In our PVFMM software library, we use kernel independent FMM and this allows us to compute potentials for a wide range of elliptic kernels. Our method is high order, adaptive and scalable. In this paper, we discuss several algorithmic improvements and performance optimizations including cache locality, vectorization, shared memory parallelism and use of coprocessors. Our distributed memory implementation uses space-filling curve for partitioning data and a hypercube communication scheme. We present convergence results for Laplace, Stokes and Helmholtz (low wavenumber) kernels for both particle and volume FMM. We measure efficiency of our method in terms of CPU cycles per unknown for different accuracies and different kernels. We also demonstrate scalability of our implementation up to several thousand processor cores on the Stampede platform at the Texas Advanced Computing Center.
The coordinate transformation offers a remarkable way to design cloaks that can steer electromagnetic fields so as to prevent waves from penetrating into the cloaked region (denoted by Ω0, where the objects inside are invisible to observers outside). The ideal circular and elliptic cylindrical cloaked regions are blown up from a point and a line segment, respectively so the transformed material parameters and the corresponding coefficients of the resulted equations are highly singular at the cloaking boundary ∂Ω0. The electric field or magnetic field is not continuous across ∂Ω0. The imposition of appropriate cloaking boundary conditions (CBCs) to achieve perfect concealment is a crucial but challenging issue.
Based upon the principle that a well-behaved electromagnetic field in the original space must be well-behaved in the transformed space as well, we obtain CBCs that intrinsically relate to the essential “pole” conditions of a singular transformation. We also find that for the elliptic cylindrical cloak, the CBCs should be imposed differently for the cosine-elliptic and sine-elliptic components of the decomposed fields. With these at our disposal, we can rigorously show that the governing equation in Ω0 can be decoupled from the exterior region , and the total fields in the cloaked region vanish under mild conditions. We emphasize that our proposal of CBCs is different from any existing ones.
Using the exact circular (resp., elliptic) Dirichlet-to-Neumann (DtN) non-reflecting boundary conditions to reduce the unbounded domain to a bounded domain, we introduce an accurate and efficient Fourier-Legendre spectral-element method (FLSEM) (resp., Mathieu-Legendre spectral-element method (MLSEM)) to simulate the circular cylindrical cloak (resp., elliptic cylindrical cloak). We provide ample numerical results to demonstrate that the perfect concealment of waves can be achieved for the ideal circular/elliptic cylindrical cloaks under our proposed CBCs and accurate numerical solvers.
An iterative discontinuous Galerkin (DG) method is proposed to solve the nonlinear Poisson Boltzmann (PB) equation. We first identify a function space in which the solution of the nonlinear PB equation is iteratively approximated through a series of linear PB equations, while an appropriate initial guess and a suitable iterative parameter are selected so that the solutions of linear PB equations are monotone within the identified solution space. For the spatial discretization we apply the direct discontinuous Galerkin method to those linear PB equations. More precisely, we use one initial guess when the Debye parameter λ = (1), and a special initial guess for λ ≫1 to ensure convergence. The iterative parameter is carefully chosen to guarantee the existence, uniqueness, and convergence of the iteration. In particular, iteration steps can be reduced for a variable iterative parameter. Both one and two-dimensional numerical results are carried out to demonstrate both accuracy and capacity of the iterative DG method for both cases of λ = (1) and λ ≪ 1. The (m + 1)th order of accuracy for L2 and mth order of accuracy for H1 for Pm elements are numerically obtained.
This work proposes a generalized boundary integral method for variable coefficients elliptic partial differential equations (PDEs), including both boundary value and interface problems. The method is kernel-free in the sense that there is no need to know analytical expressions for kernels of the boundary and volume integrals in the solution of boundary integral equations. Evaluation of a boundary or volume integral is replaced with interpolation of a Cartesian grid based solution, which satisfies an equivalent discrete interface problem, while the interface problem is solved by a fast solver in the Cartesian grid. The computational work involved with the generalized boundary integral method is essentially linearly proportional to the number of grid nodes in the domain. This paper gives implementation details for a second-order version of the kernel-free boundary integral method in two space dimensions and presents numerical experiments to demonstrate the efficiency and accuracy of the method for both boundary value and interface problems. The interface problems demonstrated include those with piecewise constant and large-ratio coefficients and the heterogeneous interface problem, where the elliptic PDEs on two sides of the interface are of different types.
This paper investigates the reduction of backscatter radar cross section (RCS) for a rectangular cavity embedded in the ground plane. The bottom of the cavity is coated by a thin, multilayered radar absorbing material (RAM) with possibly different permittivities. The objective is to minimize the backscatter RCS by the incidence of a plane wave over a single or a set of incident angles. By formulating the scattering problem as a Helmholtz equation with artificial boundary condition, the gradient with respect to the material permittivities is determined efficiently by the adjoint state method, which is integrated into a nonlinear optimization scheme. Numerical example shows the RCS may be significantly reduced.
Boundary integral methods are naturally suited for the computation of harmonic functions on a region having inclusions or cells with different material properties. However, accuracy deteriorates when the cell boundaries are close to each other. We present a boundary integral method in two dimensions which is specially designed to maintain second order accuracy even if boundaries are arbitrarily close. The method uses a regularization of the integral kernel which admits analytically determined corrections to maintain accuracy. For boundaries with many components we use the fast multipole method for efficient summation. We compute electric potentials on a domain with cells whose conductivity differs from that of the surrounding medium. We first solve an integral equation for a source term on the cell interfaces and then find values of the potential near the interfaces via integrals. Finally we use a Poisson solver to extend the potential to a regular grid covering the entire region. A number of examples are presented. We demonstrate that increased refinement is not needed to maintain accuracy as interfaces become very close.