We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of $L^p$ approximations, we establish the existence of a special $L^\infty$ minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
We obtain a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space. As an application of the upper bound, we derive universal inequalities for Neumann eigenvalues of the Laplacian.
We first prove that the realization $A_{\mathrm {min}}$ of $A:={\operatorname {\mathrm {div}}}(Q\nabla )-V$ in $L^2({\mathbb {R}}^d)$ with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on $L^2({\mathbb {R}}^d)$ which coincides on $L^2({\mathbb {R}}^d)\cap C_b({\mathbb {R}}^d)$ with the minimal semigroup generated by a realization of $A$ on $C_b({\mathbb {R}}^d)$. Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of $A$ and deduce some spectral properties of $A_{\min }$ in the case of polynomially and exponentially growing diffusion and potential coefficients.
We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.
We consider the Dirichlet Laplacian with uniform magnetic field on a curved strip in two dimensions. We give a sufficient condition on the width and the curvature of the strip ensuring the existence of the discrete spectrum in the strong magnetic field limit, answering (negatively) a conjecture made by Duclos and Exner.
We investigate the continuity and differentiability of the Hardy constant with respect to perturbations of the domain in the case where the problem involves the distance from a boundary submanifold. We also investigate the case where only the submanifold is deformed.
Given an open, bounded set $\Omega $ in $\mathbb {R}^N$, we consider the minimization of the anisotropic Cheeger constant $h_K(\Omega )$ with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $\Omega $ is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
We extend a result of Lieb [‘On the lowest eigenvalue of the Laplacian for the intersection of two domains’, Invent. Math.74(3) (1983), 441–448] to the fractional setting. We prove that if A and B are two bounded domains in $\mathbb R^N$ and $\lambda _s(A)$, $\lambda _s(B)$ are the lowest eigenvalues of $(-\Delta )^s$, $0<s<1$, with Dirichlet boundary conditions, there exists some translation $B_x$ of B such that $\lambda _s(A\cap B_x)< \lambda _s(A)+\lambda _s(B)$. Moreover, without the boundedness assumption on A and B, we show that for any $\varepsilon>0$, there exists some translation $B_x$ of B such that $\lambda _s(A\cap B_x)< \lambda _s(A)+\lambda _s(B)+\varepsilon .$
We give a short proof of the Torelli theorem for
$ALH^*$
gravitational instantons using the authors’ previous construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of
$ALH^*_b$
gravitational instantons.
For $N\geq 2$, a bounded smooth domain $\Omega$ in $\mathbb {R}^{N}$, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
\[ -\Delta_p \phi + V |\phi|^{p-2}\phi = \lambda g |\phi|^{p-2}\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial \Omega, \]
where $g$ and $V$ vary over the rearrangement classes of $g_0$ and $V_0$, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$ and a maximizing pair $(\overline {g},\,\overline {V})$ for $g_0$ and $V_0$ lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
In this paper we are interested in comparing the spectra of two elliptic operators acting on a closed minimal submanifold of the Euclidean unit sphere. Using an approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare the eigenvalues of the stability operator acting on sections of the normal bundle and the Hodge Laplacian operator acting on $1$-forms. As a byproduct of the technique and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain that its first Betti's number is bounded from above by a multiple of the Morse index, which provide evidence for a well-known conjecture of Schoen and Marques & Neves in the setting of higher codimension.
Hajnal and Szemerédi proved that if G is a finite graph with maximum degree
$\Delta $
, then for every integer
$k \geq \Delta +1$
, G has a proper colouring with k colours in which every two colour classes differ in size at most by
$1$
; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree
$\Delta $
, then for each
$k \geq \Delta + 1$
, G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable
$\Delta $
-colourings of graphs with small average degree. Namely, we prove that if
$\Delta \geq 3$
, G does not contain a clique on
$\Delta + 1$
vertices and
$\mu $
is an atomless G-invariant probability measure such that the average degree of G with respect to
$\mu $
is at most
$\Delta /5$
, then G has a
$\mu $
-equitable
$\Delta $
-colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.
We derive and numerically implement various asymptotic approximations for the lowest or principal eigenvalue of the Laplacian with a periodic arrangement of localised traps of small \[\mathcal{O}(\varepsilon )\] spatial extent that are centred at the lattice points of an arbitrary Bravais lattice in \[{\mathbb{R}^2}\]. The expansion of this principal eigenvalue proceeds in powers of \[\nu \equiv - 1/\log (\varepsilon {d_c})\], where dc is the logarithmic capacitance of the trap set. An explicit three-term approximation for this principal eigenvalue is derived using strong localised perturbation theory, with the coefficients in this series evaluated numerically by using an explicit formula for the source-neutral periodic Green’s function and its regular part. Moreover, a transcendental equation for an improved approximation to the principal eigenvalue, which effectively sums all the logarithmic terms in powers of v, is derived in terms of the regular part of the periodic Helmholtz Green’s function. By using an Ewald summation technique to first obtain a rapidly converging infinite series representation for this regular part, a simple Newton iteration scheme on the transcendental equation is implemented to numerically evaluate the improved ‘log-summed’ approximation to the principal eigenvalue. From a numerical computation of the PDE eigenvalue problem defined on the fundamental Wigner–Seitz (WS) cell for the lattice, it is shown that the three-term asymptotic approximation for the principal eigenvalue agrees well with the numerical result only for a rather small trap radius. In contrast, the log-summed asymptotic result provides a very close approximation to the principal eigenvalue even when the trap radius is only moderately small. For a circular trap, the first few transcendental correction terms that further improves the log-summed approximation for the principal eigenvalue are derived. Finally, it is shown numerically that, amongst all Bravais lattices with a fixed area of the primitive cell, the principal eigenvalue is maximised for a regular hexagonal arrangement of traps.
Let
$\Sigma $
be a compact surface with boundary. For a given conformal class c on
$\Sigma $
the functional
$\sigma _k^*(\Sigma ,c)$
is defined as the supremum of the kth normalized Steklov eigenvalue over all metrics in c. We consider the behavior of this functional on the moduli space of conformal classes on
$\Sigma $
. A precise formula for the limit of
$\sigma _k^*(\Sigma ,c_n)$
when the sequence
$\{c_n\}$
degenerates is obtained. We apply this formula to the study of natural analogs of the Friedlander–Nadirashvili invariants of closed manifolds defined as
$\inf _{c}\sigma _k^*(\Sigma ,c)$
, where the infimum is taken over all conformal classes c on
$\Sigma $
. We show that these quantities are equal to
$2\pi k$
for any surface with boundary. As an application of our techniques we obtain new estimates on the kth normalized Steklov eigenvalue of a nonorientable surface in terms of its genus and the number of boundary components.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
We show that for any n divisible by 3, almost all order-n Steiner triple systems admit a decomposition of almost all their triples into disjoint perfect matchings (that is, almost all Steiner triple systems are almost resolvable).
In this paper, we look at a linear system of ordinary differential equations as derived from the two-dimensional Ginzburg–Landau equation. In two cases, it is known that this system admits bounded solutions coming from the invariance of the Ginzburg–Landau equation by translations and rotations. The specific contribution of our work is to prove that in the other cases, the system does not admit any bounded solutions. We show that this bounded solution problem is related to an eigenvalue problem.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
Given a smooth compact hypersurface $M$ with boundary $\unicode[STIX]{x1D6F4}=\unicode[STIX]{x2202}M$, we prove the existence of a sequence $M_{j}$ of hypersurfaces with the same boundary as $M$, such that each Steklov eigenvalue $\unicode[STIX]{x1D70E}_{k}(M_{j})$ tends to zero as $j$ tends to infinity. The hypersurfaces $M_{j}$ are obtained from $M$ by a local perturbation near a point of its boundary. Their volumes and diameters are arbitrarily close to those of $M$, while the principal curvatures of the boundary remain unchanged.