We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $B(\Omega )$ be a Banach space of holomorphic functions on a bounded connected domain $\Omega $ in ${{\mathbb C}^n}$. In this paper, we establish a criterion for $B(\Omega )$ to be reflexive via evaluation functions on $B(\Omega )$, that is, $B(\Omega )$ is reflexive if and only if the evaluation functions span the dual space $(B(\Omega ))^{*} $.
The aim of this paper is to develop an approach to obtain self-adjoint extensions of symmetric operators acting on anti-dual pairs. The main advantage of such a result is that it can be applied for structures not carrying a Hilbert space structure or a normable topology. In fact, we will show how hermitian extensions of linear functionals of involutive algebras can be governed by means of their induced operators. As an operator theoretic application, we provide a direct generalization of Parrott’s theorem on contractive completion of 2 by 2 block operator-valued matrices. To exhibit the applicability in noncommutative integration, we characterize hermitian extendibility of symmetric functionals defined on a left ideal of a $C^{\ast }$-algebra.
The classical Monge–Kantorovich (MK) problem as originally posed is concerned with how best to move a pile of soil or rubble to an excavation or fill with the least amount of work relative to some cost function. When the cost is given by the square of the Euclidean distance, one can define a metric on densities called the Wasserstein distance. In this note, we formulate a natural matrix counterpart of the MK problem for positive-definite density matrices. We prove a number of results about this metric including showing that it can be formulated as a convex optimisation problem, strong duality, an analogue of the Poincaré–Wirtinger inequality and a Lax–Hopf–Oleinik–type result.
By homotopy linear algebra we mean the study of linear functors between slices of the ∞-category of ∞-groupoids, subject to certain finiteness conditions. After some standard definitions and results, we assemble said slices into ∞-categories to model the duality between vector spaces and profinite-dimensional vector spaces, and set up a global notion of homotopy cardinality à la Baez, Hoffnung and Walker compatible with this duality. We needed these results to support our work on incidence algebras and Möbius inversion over ∞-groupoids; we hope that they can also be of independent interest.
In this paper we define lower, upper, and symmetric completeness and discuss closure of the sets in products and direct sums. In particular, we introduce suitable bases for these topologies, which leads us to investigate completeness of the direct sum and its components. Some results obtained about $X$-topologies and polars of the neighborhoods.
We prove Hahn-Banach type theorems for linear functionals with values in R∪{+∞} on ordered cones, Using the concept of locally convex cones, we provide a sandwich theorem involving sub- and superlinear functionals which are allowed to attain infinite values. It render general versions of well-known extension and separation results. We describe the range of all linear functionals sandwiched between given sub- and superlinear functionals on an ordered cone. The results are of interest even in vector spaces, since we consider sublinear functionals that may attain the value +∞.
We prove that given an operator space structure on a dual Banach space Y*, it is not necessarily the dual one of some operator space structure on Y. This allows us to show that Sakai's theorem providing the identification between C*-algebras having a predual and von Neumann algebras does not extend to the category of operator spaces. We also include a related result about completely bounded operators from B(ℓ2)* into the operator Hilbert space OH.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.