We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze the limit of stable solutions to the Ginzburg-Landau (GL) equations when ${\varepsilon }$, the inverse of the GL parameter, goes to zero and in a regime where the applied magnetic field is of order $|\log {\varepsilon } |$ whereas the total energy is of order $|\log {\varepsilon }|^2$. In order to do that, we pass to the limit in the second inner variation of the GL energy. The main difficulty is to understand the convergence of quadratic terms involving derivatives of functions converging only weakly in $H^1$. We use an assumption of convergence of energies, the limiting criticality conditions obtained by Sandier-Serfaty by passing to the limit in the first inner variation, and properties of limiting vorticities to find the limit of all the desired quadratic terms. At last, we investigate the limiting stability condition we have obtained. In the case with magnetic field, we study an example of an admissible limiting vorticity supported on a line in a square ${{\Omega }}=(-L,L)^2$ and show that if L is small enough, this vorticiy satisfies the limiting stability condition, whereas when L is large enough, it stops verifying that condition. In the case without magnetic field, we use a result of Iwaniec-Onninen to prove that every measure in $H^{-1}({{\Omega }})$ satisfying the first-order limiting criticality condition also verifies the second-order limiting stability condition.
In this paper, we review some recent results on nonlocal interaction problems. The focus is on interaction kernels that are anisotropic variants of the classical Coulomb kernel. In other words, while preserving the same singularity at zero of the Coulomb kernel, they present preferred directions of interaction. For kernels of this kind and general confinement we will prove existence and uniqueness of minimizers of the corresponding energy. In the case of a quadratic confinement we will review a recent result by Carrillo and Shu about the explicit characterization of minimizers, and present a new proof, which has the advantage of being extendable to higher dimensions. In light of this result, we will re-examine some previous works motivated by applications to dislocation theory in materials science. Finally, we will discuss some related results and open questions.
We make some remarks on the Euler–Lagrange equation of energy functional $I(u)=\int _\Omega f(\det Du)\,{\rm d}x,$ where $f\in C^1(\mathbb {R}).$ For certain weak solutions $u$ we show that the function $f'(\det Du)$ must be a constant over the domain $\Omega$ and thus, when $f$ is convex, all such solutions are an energy minimizer of $I(u).$ However, other weak solutions exist such that $f'(\det Du)$ is not constant on $\Omega.$ We also prove some results concerning the homeomorphism solutions, non-quasimonotonicity and radial solutions, and finally we prove some stability results and discuss some related questions concerning certain approximate solutions in the 2-Dimensional cases.
This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with
$p\neq 2$
. First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of
$1-|u_\varepsilon |$
in the domain away from the singularities when
$\varepsilon \to 0$
, where
$u_\varepsilon $
is a minimizer of p-GL functional with
$p \in (1,2)$
. Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on
$\mathbb {R}^2$
.
The propagation of gradient flow structures from microscopic to macroscopic models is a topic of high current interest. In this paper, we discuss this propagation in a model for the diffusion of particles interacting via hard-core exclusion or short-range repulsive potentials. We formulate the microscopic model as a high-dimensional gradient flow in the Wasserstein metric for an appropriate free-energy functional. Then we use the JKO approach to identify the asymptotics of the metric and the free-energy functional beyond the lowest order for single particle densities in the limit of small particle volumes by matched asymptotic expansions. While we use a propagation of chaos assumption at far distances, we consider correlations at small distance in the expansion. In this way, we obtain a clear picture of the emergence of a macroscopic gradient structure incorporating corrections in the free-energy functional due to the volume exclusion.
Within the framework of the generalised Landau-de Gennes theory, we identify a Q-tensor-based energy that reduces to the four-constant Oseen–Frank energy when it is considered over orientable uniaxial nematic states. Although the commonly considered version of the Landau-de Gennes theory has an elastic contribution that is at most cubic in components of the Q-tensor and their derivatives, the alternative offered here is quartic in these variables. One clear advantage of our approach over the cubic theory is that the associated minimisation problem is well-posed for a significantly wider choice of elastic constants. In particular, this quartic energy can be used to model nematic-to-isotropic phase transitions for highly disparate elastic constants. In addition to proving well-posedness of the proposed version of the Landau-de Gennes theory, we establish a rigorous connection between this theory and its Oseen–Frank counterpart via a Г-convergence argument in the limit of vanishing nematic correlation length. We also prove strong convergence of the associated minimisers.
We compute the optimal investment strategy for an individual who wishes to minimize her probability of lifetime ruin. The financial market in which she invests consists of two riskless assets. One riskless asset is a money market, and she consumes from that account. The other riskless asset is a bond that earns a higher interest rate than the money market, but buying and selling bonds are subject to proportional transaction costs. We consider the following three cases. (1) The individual is allowed to borrow from both riskless assets; ruin occurs if total imputed wealth reaches zero. Under the optimal strategy, the individual does not sell short the bond. However, she might wish to borrow from the money market to fund her consumption. Thus, in the next two cases, we seek to limit borrowing from that account. (2) We assume that the individual pays a higher rate to borrow than she earns on the money market. (3) The individual is not allowed to borrow from either asset; ruin occurs if both the money market and bond accounts reach zero wealth. We prove that the borrowing rate in case (2) acts as a parameter connecting the two seemingly unrelated cases (1) and (3).
This paper focuses on the role of a government of a large population of interacting agents as a meanfield optimal control problem derived from deterministic finite agent dynamics. The control problems are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the dynamics of the probability distribution of the agent population. We derive existence of optimal controls in a measure-theoretical setting as natural limits of finite agent optimal controls without any assumption on the regularity of control competitors. In particular, we prove the consistency of mean-field optimal controls with corresponding underlying finite agent ones. The results follow from a Γ -convergence argument constructed over the mean-field limit, which stems from leveraging the superposition principle.
over the space of ${{W}^{1,2}}(\Omega ,{{\mathbb{R}}^{m}})$ where the integrand $\text{F}:{{\mathbb{M}}_{m\times n}}\to \mathbb{R}$ is a smooth uniformly convex function with bounded second derivatives. In this paper we address the question of regularity for solutions of the corresponding system of Euler–Lagrange equations. In particular, we introduce a class of singularmaps referred to as traceless and examine themas a new counterexample to the regularity of minimizers of the energy functional $F[\cdot ,\Omega ]$ using a method based on null Lagrangians.
A full multigrid method with coarsening by a factor-of-three to distributed control problems constrained by Stokes equations is presented. An optimal control problem with cost functional of velocity and/or pressure tracking-type is considered with Dirichlet boundary conditions. The optimality system that results from a Lagrange multiplier framework, form a linear system connecting the state, adjoint, and control variables. We investigate multigrid methods with finite difference discretization on staggered grids. A coarsening by a factor-of-three is used on staggered grids that results nested hierarchy of staggered grids and simplified the inter-grid transfer operators. A distributive-Gauss-Seidel smoothing scheme is employed to update the state- and adjoint-variables and a gradient update step is used to update the control variables. Numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed multigrid framework to tracking-type optimal control problems.
In this paper, we propose a splitting positive definite mixed finite element method for the approximation of convex optimal control problems governed by linear parabolic equations, where the primal state variable y and its flux σ are approximated simultaneously. By using the first order necessary and sufficient optimality conditions for the optimization problem, we derive another pair of adjoint state variables z and ω, and also a variational inequality for the control variable u is derived. As we can see the two resulting systems for the unknown state variable y and its flux σ are splitting, and both symmetric and positive definite. Besides, the corresponding adjoint states z and ω are also decoupled, and they both lead to symmetric and positive definite linear systems. We give some a priori error estimates for the discretization of the states, adjoint states and control, where Ladyzhenkaya-Babuska-Brezzi consistency condition is not necessary for the approximation of the state variable y and its flux σ. Finally, numerical experiments are given to show the efficiency and reliability of the splitting positive definite mixed finite element method.
In this work, we develop an adaptive algorithm for solving elliptic optimal control problems with simultaneously appearing state and control constraints. The algorithm combines a Moreau-Yosida technique for handling state constraints with a semi-smooth Newton method for solving the optimality systems of the regularized sub-problems. The state and adjoint variables are discretized using continuous piecewise linear finite elements while a variational discretization concept is applied for the control. To perform the adaptive mesh refinements cycle we derive local error estimators which extend the goal-oriented error approach to our setting. The performance of the overall adaptive solver is assessed by numerical examples.
In this paper we consider PDE-constrained optimization problems which incorporate an H1 regularization control term. We focus on a time-dependent PDE, and consider both distributed and boundary control. The problems we consider include bound constraints on the state, and we use a Moreau-Yosida penalty function to handle this. We propose Krylov solvers and Schur complement preconditioning strategies for the different problems and illustrate their performance with numerical examples.
Lower semi-continuity results for polyconvex functionals of the calculus of variations along sequences of maps u: Ω ⊂ ℝn → ℝm in W1,m, 2 ⩽ m⩽ n, weakly converging in W1,m-1, are established. In addition, for m = n + 1, we also consider the autonomous case for weakly converging maps in W1,n-1.
The regularity of solutions to optimal transportation problems has become a hot topic in current research. It is well known by now that the optimal measure may not be concentrated on the graph of a continuous mapping unless both the transportation cost and the masses transported satisfy very restrictive hypotheses (including sign conditions on the mixed fourth-order derivatives of the cost function). The purpose of this note is to show that in spite of this, the optimal measure is supported on a Lipschitz manifold, provided only that the cost is ${{C}^{2}}$ with non-singular mixed second derivative. We use this result to provide a simple proof that solutions to Monge's optimal transportation problem satisfy a change of variables equation almost everywhere.
A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multi-grid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.
An elliptic optimal control problem with constraints on the state variable is considered. The Lavrentiev-type regularization is used to treat the constraints on the state variable. To solve the problem numerically, the multigrid for optimization (MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented. Numerical results are reported to illustrate and compare the efficiency of both multigrid strategies.
A self-consistent model for charged particles, accounting for quantum confinement, diffusive transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three-dimensional Poisson equation with the particle density as the source term. This density is the product of a two-dimensional surface density and that of a one-dimensional mixed quantum state. The surface density is the solution of a drift–diffusion equation with an effective surface potential deduced from the fully three-dimensional one and which involves the diagonalization of a one-dimensional Schrödinger operator. The overall problem is viewed as a two-dimensional drift–diffusion equation coupled to a Schrödinger–Poisson system. The latter is proven to be well posed by a convex minimization technique. A relative entropy and an a priori $L^2$ estimate provide sufficient bounds to prove existence and uniqueness of a global-in-time solution. In the case of thermodynamic equilibrium boundary data, a unique stationary solution is proven to exist. The relative entropy allows us to prove the convergence of the transient solution towards it as time grows to infinity. Finally, the low-order approximation of the relative entropy is used to prove that this convergence is exponential in time.