We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that any isometric immersion of a flat plane domain into ${\mathbb {R}}^3$ is developable provided it enjoys the little Hölder regularity $c^{1,2/3}$. In particular, isometric immersions of local $C^{1,\alpha }$ regularity with $\alpha >2/3$ belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].
This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$-dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$-parallel second fundamental form $h$. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.
We give a sharp estimate for the first eigenvalue of the Schrödinger operator $L:=-\Delta -\sigma $ which is defined on the closed minimal submanifold $M^{n}$ in the unit sphere $\mathbb {S}^{n+m}$, where $\sigma $ is the square norm of the second fundamental form.
We prove a stability result of isometric immersions of hypersurfaces in Riemannian manifolds, with respect to $L^p$-perturbations of their fundamental forms: For a manifold ${\mathcal M}^d$ endowed with a reference metric and a reference shape operator, we show that a sequence of immersions $f_n:{\mathcal M}^d\to {\mathcal N}^{d+1}$, whose pullback metrics and shape operators are arbitrary close in $L^p$ to the reference ones, converge to an isometric immersion having the reference shape operator. This result is motivated by elasticity theory and generalizes a previous result [AKM22] to a general target manifold ${\mathcal N}$, removing a constant curvature assumption. The method of proof differs from that in [AKM22]: it extends a Young measure approach that was used in codimension-0 stability results, together with an appropriate relaxation of the energy and a regularity result for immersions satisfying given fundamental forms. In addition, we prove a related quantitative (rather than asymptotic) stability result in the case of Euclidean target, similar to [CMM19] but with no a priori assumed bounds.
In this note, we establish a boundary maximum principle for a class of stationary pairs of varifolds satisfying a fixed contact angle condition in any compact Riemannian manifold with smooth boundary.
In this article, we investigate the spectra of the stability and Hodge–Laplacian operators on a compact manifold immersed as a hypersurface in a smooth metric measure space, possibly with singularities. Using ideas developed by A. Ros and A. Savo, along with an ingenious computation, we have obtained a comparison between the spectra of these operators. As a byproduct of this technique, we have deduced an estimate of the Morse index of such hypersurfaces.
In this paper, we consider the closed spacelike solution to a class of Hessian quotient equations in de Sitter space. Under mild assumptions, we obtain an existence result using standard degree theory based on a priori estimates.
We construct inhomogeneous isoparametric families of hypersurfaces with non-austere focal set on each symmetric space of non-compact type and rank ${\geq }3$. If the rank is ${\geq }4$, there are infinitely many such examples. Our construction yields the first examples of isoparametric families on any Riemannian manifold known to have a non-austere focal set. They can be obtained from a new general extension method of submanifolds from Euclidean spaces to symmetric spaces of non-compact type. This method preserves the mean curvature and isoparametricity, among other geometric properties.
Let $f\colon M^{2n}\to \mathbb {R}^{2n+p}$, $2\leq p\leq n-1$, be an isometric immersion of a Kaehler manifold into Euclidean space. Yan and Zheng (2013, Michigan Mathematical Journal 62, 421–441) conjectured that if the codimension is $p\leq 11$, then, along any connected component of an open dense subset of $M^{2n}$, the submanifold is as follows: it is either foliated by holomorphic submanifolds of dimension at least $2n-2p$ with tangent spaces in the kernel of the second fundamental form whose images are open subsets of affine vector subspaces, or it is embedded holomorphically in a Kaehler submanifold of $\mathbb {R}^{2n+p}$ of larger dimension than $2n$. This bold conjecture was proved by Dajczer and Gromoll just for codimension 3 and then by Yan and Zheng for codimension 4. In this paper, we prove that the second fundamental form of the submanifold behaves pointwise as expected in case that the conjecture is true. This result is a first fundamental step for a possible classification of the nonholomorphic Kaehler submanifolds lying with low codimension in Euclidean space. A counterexample shows that our proof does not work for higher codimension, indicating that proposing $p=11$ in the conjecture as the largest codimension is appropriate.
Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$. In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$, where $\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with $\lambda _{1}\geqslant 0$, $H$ and $C$ are respectively the mean curvature vector and the Kähler function of $M$ in $\mathbb{C}P^{2}$. The critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in $\mathbb{C}P^{2}$. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.
In a 4-manifold, the composition of a Riemannian Einstein metric with an almost paracomplex structure that is isometric and parallel defines a neutral metric that is conformally flat and scalar flat. In this paper, we study hypersurfaces that are null with respect to this neutral metric, and in particular we study their geometric properties with respect to the Einstein metric. Firstly, we show that all totally geodesic null hypersurfaces are scalar flat and their existence implies that the Einstein metric in the ambient manifold must be Ricci-flat. Then, we find a necessary condition for the existence of null hypersurface with equal nontrivial principal curvatures, and finally, we give a necessary condition on the ambient scalar curvature, for the existence of null (non-minimal) hypersurfaces that are of constant mean curvature.
We investigate geometric aspects of complete spacelike mean curvature flow solitons of codimension one in a generalized Robertson–Walker (GRW) spacetime $-I\times _{f}M^n$, with base $I\subset \mathbb R$, Riemannian fiber $M^n$ and warping function $f\in C^\infty (I)$. For this, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space and to obtain nonexistence results concerning these solitons. In particular, we deal with entire graphs constructed over the Riemannian fiber $M^n$, which are spacelike mean curvature flow solitons, and we also explore the geometry of a conformal vector field to establish topological and further rigidity results for compact (without boundary) mean curvature flow solitons in a GRW spacetime. Moreover, we study the stability of spacelike mean curvature flow solitons with respect to an appropriate stability operator. Standard examples of spacelike mean curvature flow solitons in GRW spacetimes are exhibited, and applications related to these examples are given.
The local classification of Kaehler submanifolds $M^{2n}$ of the hyperbolic space $\mathbb{H}^{2n+p}$ with low codimension $2\leq p\leq n-1$ under only intrinsic assumptions remains a wide open problem. The situation is quite different for submanifolds in the round sphere $\mathbb{S}^{2n+p}$, $2\leq p\leq n-1$, since Florit et al. [7] have shown that the codimension has to be $p=n-1$ and then that any submanifold is just part of an extrinsic product of two-dimensional umbilical spheres in $\mathbb{S}^{3n-1}\subset\mathbb{R}^{3n}$. The main result of this paper is a version for Kaehler manifolds isometrically immersed into the hyperbolic ambient space of the result in [7] for spherical submanifolds. Besides, we generalize several results obtained by Dajczer and Vlachos [5].
In this paper, we solved an open problem raised by Cecil and Ryan (2015, Geometry of Hypersurfaces, Springer Monographs in Mathematics, Springer, New York, p. 531) by proving the nonexistence of non-Hopf Ricci-semisymmetric real hypersurfaces in $\mathbb {C}P^{2}$ and $\mathbb {C}H^{2}$.
The total mean curvature functional for submanifolds into the Riemannian product space $\mathbb{S}^n\times\mathbb{R}$ is considered and its first variational formula is presented. Later on, two second-order differential operators are defined and a nice integral inequality relating both of them is proved. Finally, we prove our main result: an integral inequality for closed stationary $\mathcal{H}$-surfaces in $\mathbb{S}^n\times\mathbb{R}$, characterizing the cases where the equality is attained.
In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
In this short note, we deal with complete noncompact expanding and steady Ricci solitons of dimension $n\geq 3.$ More precisely, under an integrability assumption, we obtain a characterization for the generalized cigar Ricci soliton and the Gaussian Ricci soliton.
We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in
$\mathbf {R}^4$
has intrinsic cubic volume growth, provided the parametric elliptic integral is
$C^2$
-close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in
$\mathbf {R}^4$
. The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
In the present note, we establish a finiteness theorem for $L^p$ harmonic 1-forms on hypersurfaces with finite index, which is an extension of the result of Choi and Seo (J. Geom. Phys.129 (2018), 125–132).