We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Haefliger–Thurston conjecture predicts that Haefliger's classifying space for $C^r$-foliations of codimension $n$ whose normal bundles are trivial is $2n$-connected. In this paper, we confirm this conjecture for piecewise linear (PL) foliations of codimension $2$. Using this, we use a version of the Mather–Thurston theorem for PL homeomorphisms due to the author to derive new homological properties for PL surface homeomorphisms. In particular, we answer the question of Epstein in dimension $2$ and prove the simplicity of the identity component of PL surface homeomorphisms.
We consider manifold-knot pairs $(Y,K)$, where Y is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface $\Sigma $ in a homology ball X, such that $\partial (X, \Sigma ) = (Y, K)$ can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from $(Y, K)$ to any knot in $S^3$ can be arbitrarily large. The proof relies on Heegaard Floer homology.
We exhibit a knot $P$ in the solid torus, representing a generator of first homology, such that for any knot $K$ in the 3-sphere, the satellite knot with pattern $P$ and companion $K$ is not smoothly slice in any homology 4-ball. As a consequence, we obtain a knot in a homology 3-sphere that does not bound a piecewise-linear disk in any homology 4-ball.
Nous démontrons que tous les plongements d’une variété compacte sans bord et simplement connexe de dimension quatre dans la sphère de dimension six sont concordants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.