We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider a branching random walk on the real line with a random environment in time (BRWRE). A necessary and sufficient condition for the non-triviality of the limit of the derivative martingale is formulated. To this end, we investigate the random walk in a time-inhomogeneous random environment (RWRE), which is related to the BRWRE by the many-to-one formula. The key step is to figure out Tanaka’s decomposition for the RWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
We introduce a modification of the generalized Pólya urn model containing two urns, and we study the number of balls $B_j(n)$ of a given color $j\in\{1,\ldots,J\}$ added to the urns after n draws, where $J\in\mathbb{N}$. We provide sufficient conditions under which the random variables $(B_j(n))_{n\in\mathbb{N}}$, properly normalized and centered, converge weakly to a limiting random variable. The result reveals a similar trichotomy as in the classical case with one urn, one of the main differences being that in the scaling we encounter 1-periodic continuous functions. Another difference in our results compared to the classical urn models is that the phase transition of the second-order behavior occurs at $\sqrt{\rho}$ and not at $\rho/2$, where $\rho$ is the dominant eigenvalue of the mean replacement matrix.
We investigate the tail behavior of the first-passage time for Sinai’s random walk in a random environment. Our method relies on the connection between Sinai’s walk and branching processes with immigration in a random environment, and the analysis on some important quantities of these branching processes such as extinction time, maximum population, and total population.
We consider linear-fractional branching processes (one-type and two-type) with immigration in varying environments. For $n\ge0$, let $Z_n$ count the number of individuals of the nth generation, which excludes the immigrant who enters the system at time n. We call n a regeneration time if $Z_n=0$. For both the one-type and two-type cases, we give criteria for the finiteness or infiniteness of the number of regeneration times. We then construct some concrete examples to exhibit the strange phenomena caused by the so-called varying environments. For example, it may happen that the process is extinct, but there are only finitely many regeneration times. We also study the asymptotics of the number of regeneration times of the model in the example.
We revisit processes generated by iterated random functions driven by a stationary and ergodic sequence. Such a process is called strongly stable if a random initialization exists for which the process is stationary and ergodic, and for any other initialization the difference of the two processes converges to zero almost surely. Under some mild conditions on the corresponding recursive map, without any condition on the driving sequence we show the strong stability of iterations. Several applications are surveyed such as generalized autoregression and queuing. Furthermore, new results are deduced for Langevin-type iterations with dependent noise and for multitype branching processes.
We consider continuous-state branching processes (CB processes) which become extinct almost surely. First, we tackle the problem of describing the stationary measures on $(0,+\infty)$ for such CB processes. We give a representation of the stationary measure in terms of scale functions of related Lévy processes. Then we prove that the stationary measure can be obtained from the vague limit of the potential measure, and, in the critical case, can also be obtained from the vague limit of a normalized transition probability. Next, we prove some limit theorems for the CB process conditioned on extinction in a near future and on extinction at a fixed time. We obtain non-degenerate limit distributions which are of the size-biased type of the stationary measure in the critical case and of the Yaglom distribution in the subcritical case. Finally we explore some further properties of the limit distributions.
We investigate some aspects of the problem of the estimation of birth distributions (BDs) in multi-type Galton–Watson trees (MGWs) with unobserved types. More precisely, we consider two-type MGWs called spinal-structured trees. This kind of tree is characterized by a spine of special individuals whose BD $\nu$ is different from the other individuals in the tree (called normal, and whose BD is denoted by $\mu$). In this work, we show that even in such a very structured two-type population, our ability to distinguish the two types and estimate $\mu$ and $\nu$ is constrained by a trade-off between the growth-rate of the population and the similarity of $\mu$ and $\nu$. Indeed, if the growth-rate is too large, large deviation events are likely to be observed in the sampling of the normal individuals, preventing us from distinguishing them from special ones. Roughly speaking, our approach succeeds if $r\lt \mathfrak{D}(\mu,\nu)$, where r is the exponential growth-rate of the population and $\mathfrak{D}$ is a divergence measuring the dissimilarity between $\mu$ and $\nu$.
By the technique of augmented truncations, we obtain the perturbation bounds on the distance of the finite-time state distributions of two continuous-time Markov chains (CTMCs) in a type of weaker norm than the V-norm. We derive the estimates for strongly and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples are presented to illustrate the limitation of the V-norm in perturbation analysis and to show the quality of the weak norm.
We investigate branching processes in varying environment, for which $\overline{f}_n \to 1$ and $\sum_{n=1}^\infty (1-\overline{f}_n)_+ = \infty$, $\sum_{n=1}^\infty (\overline{f}_n - 1)_+ < \infty$, where $\overline{f}_n$ stands for the offspring mean in generation n. Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction, and adding immigration. In both cases we show that the process converges in distribution without normalization to a nondegenerate compound-Poisson limit law. The proofs rely on the shape function technique, worked out by Kersting (2020).
We show joint convergence of the Łukasiewicz path and height process for slightly supercritical Galton–Watson forests. This shows that the height processes for supercritical continuous-state branching processes as constructed by Lambert (2002) are the limit under rescaling of their discrete counterparts. Unlike for (sub-)critical Galton–Watson forests, the height process does not encode the entire metric structure of a supercritical Galton–Watson forest. We demonstrate that this result is nonetheless useful, by applying it to the configuration model with an independent and identically distributed power-law degree sequence in the critical window, of which we obtain the metric space scaling limit in the product Gromov–Hausdorff–Prokhorov topology, which is of independent interest.
We study a variant of the color-avoiding percolation model introduced by Krause et al., namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph if, after the removal of the edges of any color, they are in the same component in the remaining graph. The color-avoiding connected components of an edge-colored graph are maximal sets of vertices such that any two of them are color-avoiding connected. We consider the fraction of vertices contained in color-avoiding connected components of a given size, as well as the fraction of vertices contained in the giant color-avoidin g connected component. It is known that these quantities converge, and the limits can be expressed in terms of probabilities associated to edge-colored branching process trees. We provide explicit formulas for the limit of the fraction of vertices contained in the giant color-avoiding connected component, and we give a simpler asymptotic expression for it in the barely supercritical regime. In addition, in the two-colored case we also provide explicit formulas for the limit of the fraction of vertices contained in color-avoiding connected components of a given size.
We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.
We consider a discrete-time population growth system called the Bienaymé–Galton–Watson stochastic branching system. We deal with a noncritical case, in which the per capita offspring mean $m\neq1$. The famous Kolmogorov theorem asserts that the expectation of the population size in the subcritical case $m<1$ on positive trajectories of the system asymptotically stabilizes and approaches ${1}/\mathcal{K}$, where $\mathcal{K}$ is called the Kolmogorov constant. The paper is devoted to the search for an explicit expression of this constant depending on the structural parameters of the system. Our argumentation is essentially based on the basic lemma describing the asymptotic expansion of the probability-generating function of the number of individuals. We state this lemma for the noncritical case. Subsequently, we find an extended analogue of the Kolmogorov constant in the noncritical case. An important role in our discussion is also played by the asymptotic properties of transition probabilities of the Q-process and their convergence to invariant measures. Obtaining the explicit form of the extended Kolmogorov constant, we refine several limit theorems of the theory of noncritical branching systems, showing explicit leading terms in the asymptotic expansions.
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.
We continue with the systematic study of the speed of extinction of continuous-state branching processes in Lévy environments under more general branching mechanisms. Here, we deal with the weakly subcritical regime under the assumption that the branching mechanism is regularly varying. We extend recent results of Li and Xu (2018) and Palau et al. (2016), where it is assumed that the branching mechanism is stable, and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and Pardo (2021), where the critical and the strongly and intermediate subcritical cases were treated, respectively. Our methodology combines a path analysis of the branching process together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic behaviour of exponential functionals of Lévy processes. Our approach is inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where the analogue was obtained.
We study the local convergence of critical Galton–Watson trees under various conditionings. We give a sufficient condition, which serves to cover all previous known results, for the convergence in distribution of a conditioned Galton–Watson tree to Kesten’s tree. We also propose a new proof to give the limit in distribution of a critical Galton–Watson tree, with finite support, conditioned on having a large width.
Processes of random tessellations of the Euclidean space $\mathbb{R}^d$, $d\geq 1$, are considered that are generated by subsequent division of their cells. Such processes are characterized by the laws of the life times of the cells until their division and by the laws for the random hyperplanes that divide the cells at the end of their life times. The STIT (STable with respect to ITerations) tessellation processes are a reference model. In the present paper a generalization concerning the life time distributions is introduced, a sufficient condition for the existence of such cell division tessellation processes is provided, and a construction is described. In particular, for the case that the random dividing hyperplanes have a Mondrian distribution—which means that all cells of the tessellations are cuboids—it is shown that the intrinsic volumes, except the Euler characteristic, can be used as the parameter for the exponential life time distribution of the cells.
We study in a general graph-theoretic formulation a long-range percolation model introduced by Lamperti [27]. For various underlying digraphs, we discuss connections between this model and random exchange processes. We clarify, for all $n \in \mathbb{N}$, under which conditions the lattices $\mathbb{N}_0^n$ and $\mathbb{Z}^n$ are essentially covered in this model. Moreover, for all $n \geq 2$, we establish that it is impossible to cover the directed n-ary tree in our model.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment $\{Z_n\}$ whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points $\{(\tau_j, \nu_j)\}$—specifically the values of the process at crossing times, viz. $\{(Z_{\tau_j}, Z_{\nu_j})\}$—along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.