We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Complicated option pricing models attract much attention in financial industries, as they produce relatively better accurate values by taking into account more realistic assumptions such as market liquidity, uncertain volatility and so forth. We propose a new hybrid method to accurately explore the behaviour of the nonlinear pricing model in illiquid markets, which is important in financial risk management. Our method is based on the Newton iteration technique and the Fréchet derivative to linearize the model. The linearized equation is then discretized by a differential quadrature method in space and a quadratic trapezoid rule in time. It is observed through computations that the accurate solutions for the model emerge using very few grid points and time elements, compared with the finite difference method in the literature. Furthermore, this method also helps to avoid consideration of the convergence issues of the Newton approach applied to the nonlinear algebraic system containing many unknowns at each time step if an implicit method is used in time discretization. It is important to note that the Fréchet derivative supports to enhance the convergence order of the proposed iterative scheme.
This article studies the dynamical behaviour of classical solutions of a hyperbolic system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, with time-dependent boundary conditions. It is shown that under suitable assumptions on the boundary data, solutions starting in the $H^2$-space exist globally in time and the differences between the solutions and their corresponding boundary data converge to zero as time goes to infinity. There is no smallness restriction on the magnitude of the initial perturbations. Moreover, numerical simulations show that the assumptions on the boundary data are necessary for the above-mentioned results to hold true. In addition, numerical results indicate that the solutions converge asymptotically to time-periodic states if the boundary data are time-periodic.
We introduce an approach and a software tool for solving coupled energy networks composed of gas and electric power networks. Those networks are coupled to stochastic fluctuations to address possibly fluctuating demand due to fluctuating demands and supplies. Through computational results, the presented approach is tested on networks of realistic size.
Closed-form explicit formulas for implied Black–Scholes volatilities provide a rapid evaluation method for European options under the popular stochastic alpha–beta–rho (SABR) model. However, it is well known that computed prices using the implied volatilities are only accurate for short-term maturities, but, for longer maturities, a more accurate method is required. This work addresses this accuracy problem for long-term maturities by numerically solving the no-arbitrage partial differential equation with an absorbing boundary condition at zero. Localized radial basis functions in a finite-difference mode are employed for the development of a computational method for solving the resulting two-dimensional pricing equation. The proposed method can use either multiquadrics or inverse multiquadrics, which are shown to have comparable performances. Numerical results illustrate the accuracy of the proposed method and, more importantly, that the computed risk-neutral probability densities are nonnegative. These two key properties indicate that the method of solution using localized meshless methods is a viable and efficient means for price computations under SABR dynamics.
The cell transmission model (CTM) is a macroscopic model that describes the dynamics of traffic flow over time and space. The effectiveness and accuracy of the CTM are discussed in this paper. First, the CTM formula is recognized as a finite-volume discretization of the kinematic traffic model with a trapezoidal flux function. To validate the constructed scheme, the simulation of shock waves and rarefaction waves as two important elements of traffic dynamics was performed. Adaptation of the CTM for intersecting and splitting cells is discussed. Its implementation on the road segment with traffic influx produces results that are consistent with the analytical solution of the kinematic model. Furthermore, a simulation on a simple road network shows the back and forth propagation of shock waves and rarefaction waves. Our numerical result agrees well with the existing result of Godunov’s finite-volume scheme. In addition, from this accurately proven scheme, we can extract information for the average travel time on a certain route, which is the most important information a traveller needs. It appears from simulations of different scenarios that, depending on the circumstances, a longer route may have a shorter travel time. Finally, there is a discussion on the possible application for traffic management in Indonesia during the Eid al-Fitr exodus.
DuFort–Frankel averaging is a tactic to stabilize Richardson’s unstable three-level leapfrog timestepping scheme. By including the next time level in the right-hand-side evaluation, it is implicit, but it can be rearranged to give an explicit updating formula, thus apparently giving the best of both worlds. Textbooks prove unconditional stability for the heat equation, and extensive use on a variety of advection–diffusion equations has produced many useful results. Nonetheless, for some problems the scheme can fail in an interesting and surprising way, leading to instability at very long times. An analysis for a simple problem involving a pair of evolution equations that describe the spread of a rabies epidemic gives insight into how this occurs. An even simpler modified diffusion equation suffers from the same instability. Finally, the rabies problem is revisited and a stable method is found for a restricted range of parameter values, although no prescriptive recipe is known which selects this particular choice.
The Wadge hierarchy was originally defined and studied only in the Baire space (and some other zero-dimensional spaces). Here we extend the Wadge hierarchy of Borel sets to arbitrary topological spaces by providing a set-theoretic definition of all its levels. We show that our extension behaves well in second countable spaces and especially in quasi-Polish spaces. In particular, all levels are preserved by continuous open surjections between second countable spaces which implies e.g., several Hausdorff–Kuratowski (HK)-type theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge hierarchy of sets but also for its extension to Borel functions from a space to a countable better quasiorder Q.
We propose a multi-level method to increase the accuracy of machine learning algorithms for approximating observables in scientific computing, particularly those that arise in systems modelled by differential equations. The algorithm relies on judiciously combining a large number of computationally cheap training data on coarse resolutions with a few expensive training samples on fine grid resolutions. Theoretical arguments for lowering the generalisation error, based on reducing the variance of the underlying maps, are provided and numerical evidence, indicating significant gains over underlying single-level machine learning algorithms, are presented. Moreover, we also apply the multi-level algorithm in the context of forward uncertainty quantification and observe a considerable speedup over competing algorithms.
A new Semi-Lagrangian scheme is proposed to discretize the surface convection-diffusion equation. The other involved equations including the the level-set convection equation, the re-initialization equation and the extension equation are also solved by S-L schemes. The S-L method removes both the CFL condition and the stiffness caused by the surface Laplacian, allowing larger time step than the Eulerian method. The method is extended to the block-structured adaptive mesh. Numerical examples are given to demonstrate the efficiency of the S-L method.
This article deals with numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations. The inversion problem is of instability, but it is uniquely solvable based on the solution's expression for the forward problem and estimation to the multivariate Mittag-Leffler function. From view point of optimality, solving the inversion problem is transformed to minimizing a cost functional, and existence of a minimum is proved by the weakly lower semi-continuity of the functional. Furthermore, the homotopy regularization algorithm is introduced based on the minimization problem to perform numerical inversions, and the inversion solutions with noisy data give good approximations to the exact initial distribution demonstrating the efficiency of the inversion algorithm.
In this work, we examine the mathematical analysis and numerical simulation of pattern formation in a subdiffusive multicomponents fractional-reaction-diffusion system that models the spatial interrelationship between two preys and predator species. The major result is centered on the analysis of the system for linear stability. Analysis of the main model reflects that the dynamical system is locally and globally asymptotically stable. We propose some useful theorems based on the existence and permanence of the species to validate our theoretical findings. Reliable and efficient methods in space and time are formulated to handle any space fractional reaction-diffusion system. We numerically present the complexity of the dynamics that are theoretically discussed. The simulation results in one, two and three dimensions show some amazing scenarios.
Moving mesh methods provide an efficient way of solving partial differential equations for which large, localised variations in the solution necessitate locally dense spatial meshes. In one-dimension, meshes are typically specified using the arclength mesh density function. This choice is well-justified for piecewise polynomial interpolants, but it is only justified for spectral methods when model solutions include localised steep gradients. In this paper, one-dimensional mesh density functions are presented which are based on a spatially localised measure of the bandwidth of the approximated model solution. In considering bandwidth, these mesh density functions are well-justified for spectral methods, but are not strictly tied to the error properties of any particular spatial interpolant, and are hence widely applicable. The bandwidth mesh density functions are illustrated in two ways. First, by applying them to Chebyshev polynomial approximation of two test functions, and second, through use in periodic spectral and finite-difference moving mesh methods applied to a number of model problems in acoustics. These problems include a heterogeneous advection equation, the viscous Burgers’ equation, and the Korteweg-de Vries equation. Simulation results demonstrate solution convergence rates that are up to an order of magnitude faster using the bandwidth mesh density functions than uniform meshes, and around three times faster than those using the arclength mesh density function.
The numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space is considered, where a circular artificial boundary is introduced to divide the unbounded domain into a bounded computational domain and an unbounded exterior domain. The local artificial boundary conditions for the fractional sub-diffusion equation are designed on the circular artificial boundary by a joint Laplace transform and Fourier series expansion, and some auxiliary variables are introduced to circumvent high-order derivatives in the artificial boundary conditions. The original problem defined on the unbounded domain is thus reduced to an initial boundary value problem on a bounded computational domain. A finite difference and L1 approximation are applied for the space variables and the Caputo time-fractional derivative, respectively. Two numerical examples demonstrate the performance of the proposed method.
We present a moving-least-square immersed boundary method for solving viscous incompressible flow involving deformable and rigid boundaries on a uniform Cartesian grid. For rigid boundaries, noslip conditions at the rigid interfaces are enforced using the immersed-boundary direct-forcing method. We propose a reconstruction approach that utilizes moving least squares (MLS) method to reconstruct the velocity at the forcing points in the vicinity of the rigid boundaries. For deformable boundaries, MLS method is employed to construct the interpolation and distribution operators for the immersed boundary points in the vicinity of the rigid boundaries instead of using discrete delta functions. The MLS approach allows us to avoid distributing the Lagrangian forces into the solid domains as well as to avoid using the velocity of points inside the solid domains to compute the velocity of the deformable boundaries. The present numerical technique has been validated by several examples including a Poiseuille flow in a tube, deformations of elastic capsules in shear flow and dynamics of red-blood cell in microfluidic devices.
The fractional derivatives include nonlocal information and thus their calculation requires huge storage and computational cost for long time simulations. We present an efficient and high-order accurate numerical formula to speed up the evaluation of the Caputo fractional derivative based on the L2-1σ formula proposed in [A. Alikhanov, J. Comput. Phys., 280 (2015), pp. 424-438], and employing the sum-of-exponentials approximation to the kernel function appeared in the Caputo fractional derivative. Both theoretically and numerically, we prove that while applied to solving time fractional diffusion equations, our scheme not only has unconditional stability and high accuracy but also reduces the storage and computational cost.
We present a convex-splitting scheme for the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson equation of state for pure substance. The semi-implicit scheme is proven to be uniquely solvable, mass conservative, unconditionally energy stable and L∞ convergent with the order of . The numerical results verify the effectiveness of the proposed algorithm and also show good agreement of the numerical solution with laboratory experimental results.
We propose a fully conservative and less oscillatory multi-moment scheme for the approximation of hyperbolic conservation laws. The proposed scheme (CIP-CSL3ENO) is based on two CIP-CSL3 schemes and the essentially non-oscillatory (ENO) scheme. In this paper, we also propose an ENO indicator for the multimoment framework, which intentionally selects non-smooth stencil but can efficiently minimize numerical oscillations. The proposed scheme is validated through various benchmark problems and a comparison with an experiment of two droplets collision/separation. The CIP-CSL3ENO scheme shows approximately fourth-order accuracy for smooth solution, and captures discontinuities and smooth solutions simultaneously without numerical oscillations for solutions which include discontinuities. The numerical results of two droplets collision/separation (3D free surface flow simulation) show that the CIP-CSL3ENO scheme can be applied to various types of fluid problems not only compressible flow problems but also incompressible and 3D free surface flow problems.
In this paper, we study an exponential time differencing method for solving the gauge system of incompressible viscous flows governed by Stokes or Navier-Stokes equations. The momentum equation is decoupled from the kinematic equation at a discrete level and is then solved by exponential time stepping multistep schemes in our approach. We analyze the stability of the proposed method and rigorously prove that the first order exponential time differencing scheme is unconditionally stable for the Stokes problem. We also present a compact representation of the algorithm for problems on rectangular domains, which makes FFT-based solvers available for the resulting fully discretized system. Various numerical experiments in two and three dimensional spaces are carried out to demonstrate the accuracy and stability of the proposed method.
The paper presents a novel family of arbitrary high order multioperators approximations for convection, convection-diffusion or the fluid dynamics equations. As particular cases, the 16th- and 32th-order skew-symmetric multioperators for derivatives supplied by the 15th- and 31th-order dissipation multioperators are described. Their spectral properties and the comparative efficiency of the related schemes in the case of smooth solutions are outlined. The ability of the constructed conservative schemes to deal with discontinuous solutions is investigated. Several types of nonlinear hybrid schemes are suggested and tested against benchmark problems.
This article is intended to fill in the blank of the numerical schemes with second-order convergence accuracy in time for nonlinear Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. A linearized difference scheme is proposed. The time fractional-order derivative is discretized by second-order shifted and weighted Gr¨unwald-Letnikov difference operator. The convergence accuracy in space is improved by performing the average operator. The presented numerical method is unconditionally stable with the global convergence order of in maximum norm, where τ and h are the step sizes in time and space, respectively. Finally, numerical examples are carried out to verify the theoretical results, showing that our scheme is efficient indeed.