We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The evolution of oxygenic photosynthesis had profound effects on the biogeochemistry of the planet. The increase in atmospheric oxygen levels brought about alterations to a range of biogeochemical processes involving changes in the availability of a host of elements, including nitrogen, sulfur and many metal ions such as iron and manganese, central to biological activities. Critically for photosynthetic organisms, the increase in oxygen levels in the atmosphere following the evolution of oxygenic photosynthesis and the Great Oxidation Event had consequences for the assimilation of inorganic carbon via the enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco). Although there are a number of alternative pathways leading to autotrophic CO2 assimilation, 99% of primary productivity on the planet is carried out by processes that involve Rubisco and the Benson–Calvin–Bassham cycle. The accumulation of O2 in the atmosphere also had major repercussions for increasing the energetic yield of the catabolism of photosynthate by allowing oxidative respiration, with a much greater ATP yield than from anaerobic fermentative processes. The interaction of O2 with UVC radiation led to the production of UVC- and UVB-absorbing O3. This also significantly influenced life on Earth and facilitated the colonisation of the upper ocean and terrestrial surface.
Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l−1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l−1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l−1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.
Glacier phototroph blooms on the surfaces of ice sheets and glaciers cause albedo reduction, leading to increased melting rates. We observed seasonal changes in the abundance of phototrophs on the Qaanaaq Ice Cap in northwestern Greenland from June to August 2014, and reproduced these changes using numerical and empirical models. The phototroph community on the ice surface mainly consisted of the glacier alga Ancylonema nordenskioldii and the cyanobacterium Phormidesmis priestleyi. The glacier alga appeared on the ice surface in late June, after which its abundance increased exponentially throughout the melting period. A logistic growth model designed for snow algal growth reproduced the measured exponential increases, suggesting that growth could be explained using the model as a function of the ice melting duration. Cyanobacteria appeared and their abundance increased in late July but did not change exponentially thereafter. The abundance of cyanobacteria was explained with an empirical model expressed as a function of the amount of mineral dust on the bare ice surface. Our numerical and empirical models for reproducing glacier algae and cyanobacteria could be useful for quantifying the albedo reduction caused by their growth and the melt rates of the Greenland ice sheet and glaciers in the future.
Modern agriculture needs proper solutions to face the current trend of pesticides and fertilizers reduction. One of the available leverages to support this transition is the use of bioproducts that are more environmentally friendly and less hazardous for human health. Among them, blue biotechnology and more precisely seaweed and microalgae gain interest every year in the scientific community. In agriculture, seaweeds (Macroalgae) have been used in the production of plant biostimulants while microalgae still remain unexploited. Microalgae are widely described as renewable sources of biofuels, bioingredients and biologically active compounds, such as polyunsaturated fatty acids (PUFAs), carotenoids, phycobiliproteins, sterols, vitamins and polysaccharides, which attract considerable interest in both scientific and industrial communities. They affect agricultural crops for enhancement of plant growth, seedling growth. They can also improve nutrient incorporation, fruit setting, resistance properties against pests and diseases, improving stress management (drought, salinity and temperature). The present review aimed at the interest of blue biotechnology in agronomy, with a specific focus on microalgae, their biological activities and their possible application in agriculture as a potentially sustainable alternative for enhanced crop performance, nutrient uptake and resilience to environmental stress. This review does not only present a comprehensive study of microalgae as plant biostimulants but also as biofertilizers, with a particular emphasis on future challenges these solutions will have to deal with, microalgae being able to synthesize secondary metabolites with potential biopesticidal action.
Mosquitoes are vectors of several diseases of medical concern such as malaria or dengue and can also negatively affect tourism and the life-quality of the neighbourhood. The species Aedes mariae (Sergent and Sergent, 1903) is a poorly studied mosquito that breeds in rock-pools of the Mediterranean coast. General Linear Mixed Models (GLMM) were used to determine drivers affecting the presence and abundance of this species. Abiotic and biotic factors were recorded in rock-pools with the presence of Ae. mariae sub-adults across a supralittoral area of Majorca Island (Balearic Islands, Spain) from July 2018 to June 2019. We tested how abiotic factors affected the presence of larvae, while the biotic factors were used to check their effect on larvae abundance. human landing collection was also conducted to assess the adult activity of this species. Valuable data were recorded to improve our knowledge about the bioecology of Ae. mariae in a touristic area of the island of Majorca. Salinity and pH were the most explanatory variables for the presence of Ae. mariae larvae. The presence of Posidonia oceanica (L.) Delile 1813 leaves negatively affected the abundance of Ae. mariae larvae while the presence of other fauna enhanced it. Adult females of Ae. mariae were active for 26 min after sunset in June and its host-seeking activity decreased during autumn months. Control methods against this species should be focussed on rock-pools and planning treatments according to tides, waves and precipitation.
Lichens are a well-known symbiosis between a host mycobiont and eukaryote algal or cyanobacterial photobiont partner(s). Recent studies have indicated that terrestrial lichens can also contain other cryptic photobionts that increase the lichens’ ecological fitness in response to varying environmental conditions. Marine lichens live in distinct ecosystems compared with their terrestrial counterparts because of regular submersion in seawater and are much less studied. We performed bacteria 16S and eukaryote 18S rRNA gene metabarcoding surveys to assess total photobiont diversity within the marine lichen Lichina pygmaea (Lightf.) C. Agardh, which is widespread throughout the intertidal zone of Atlantic coastlines. We found that in addition to the established cyanobacterial photobiont Rivularia, L. pygmaea is also apparently host to a range of other marine and freshwater cyanobacteria, as well as marine eukaryote algae in the family Ulvophyceae (Chlorophyta). We propose that symbiosis with multiple freshwater and marine cyanobacteria and eukaryote photobionts may contribute to the ability of L. pygmaea to survive the harsh fluctuating environmental conditions of the intertidal zone.
Continental Antarctica is a polar desert containing sparse pockets of vegetation within ice-free areas. Despite the recognized association between lichens, mosses and epiphytic diatoms, the environmental factors controlling diatom community structure are poorly understood. We investigated the association between diatom communities and host vegetation characteristics by experimentally adding nutrients and/or water to two bryophyte (healthy and moribund) and two lichen (crustose and Usnea) vegetation types in the Windmill Islands. Diatom communities were morphologically characterized, diversity indices calculated and differences between treatments, vegetation type and vegetation characteristics tested. We identified 49 diatom taxa, 8 of which occurred with > 1% relative abundance. Bryophyte and lichen vegetation harboured significantly different diatom communities, both in composition and diversity indices. Specifically, Luticola muticopsis was more prevalent in moribund bryophytes and crustose lichens, and Usnea lichens showed lower species richness than other types. While nutrient and water additions did not significantly alter diatom communities, diversity indices and some species showed relationships with vegetation physiological characteristics, notably %N and δ13C, suggesting the importance of ambient gradients in water and nutrient availability. Collectively, this work suggests that future conditions favouring the dominance of a particular vegetation type may have a homogenizing effect on the terrestrial diatom communities of East Antarctica.
Drought stress was evaluated with polyethylene glycol 6000 (PEG 6000) treatment in Dunaliella salina, a microalga known for its great ability to withstand salinities of more than 30%. The aim was to explore the acclimation mechanisms used by the microalga to regulate its growth and physiology during coping with drought stress. The microalga was subjected to culture mediums containing 2 and 5% PEG for 25 days and was compared with a control culture medium. Significant decrease in growth parameters such as specific growth rate, biomass and number of divisions per day was demonstrated in PEG-treated algae. During PEG treatment, chlorophylls slightly increased, while β-carotene and total protein were not affected. Osmolytes, as well as carbohydrates, were found to be significantly higher in PEG-treated algae than in control. Increased catalase and ascorbate peroxidase activities were proportionally related to PEG concentrations in the cultures. The PEG-treated cells accumulated a considerable amount of hydrogen peroxide and malondialdehyde, especially at higher PEG concentrations. Electrolyte leakage increased, regardless of the PEG concentrations applied, while DNA fragmentation was not observed after 25 days of treating with PEG. It was concluded that Dunaliella cells could respond to the drought stress, probably by using a higher accumulation of a range of osmolytes and also more stimulation of the antioxidant enzymatic system.
The rocky shores of New Zealand (NZ) and Australia provide many interesting comparisons in their intertidal species and structuring processes. Both countries are in the biogeographic realm of temperate Australasia and share many common species and closely related taxa. Here we review similarities and contrasts in communities and structuring processes, especially involving grazing invertebrates and macroalgae. We consider the similarity of the structure of intertidal shores of NZ and south-eastern Australia, a suite of important trophic interactions within and between regions, the utility of local-scale experiments in understanding large-scale processes and how we might better plan for and manage our coasts. The major comparisons are between warm-temperate areas of northern NZ and New South Wales, and the cooler areas of southern NZ and south-eastern Australia. In the quest for ‘ecosystem’-level understanding, which perforce involves large-scale events, there is an increasing tendency to minimise or ignore the hard-won insights gained from well-structured experiments across multiple sites. Because all large-scale effects must be manifested at local sites, it is incumbent on us to determine what scales up or down, and the caveats that make comparisons across biogeographic regions challenging. Here, we discuss these issues using austral shores as models.
Intracellular crystals of aragonite have been identified by selected area electron diffraction (SAED) in the freshwater filamentous alga Spirogyra sp. which grows sporadically as carpets in the Thames river, Ontario, Canada. The crystals are 2 to 24 µm in length, and characterized by a unique cross-shaped morphology, in which needle-like, or prismatic outgrowths develop from a common axis. Crystals may be dispersed through filaments, but tend to cluster as aggregates towards the centre.
Lichens are one of the common dominant biota in biological soil crusts (biocrusts), a community that is one of the largest in extent in the world. Here we present a summary of the main features of the lifestyle of soil crust lichens, emphasizing their habitat, ecophysiology and versatility. The soil crust is exposed to full light, often to high temperatures and has an additional water source, the soil beneath the lichens. However, despite the open nature of the habitat the lichens are active under shady and cooler conditions and avoid climate extremes of high temperature and light. In temperate and alpine habitats they can also be active for long periods, several months in some cases. They show a mixture of physiological constancy (e.g. similar activity periods and net photosynthetic rates) but also adaptations to the habitat (e.g. the response of net photosynthesis to thallus water content can differ for the same lichen species in Europe and the USA and some species show extensive rhizomorph development). Despite recent increased research, aspects of soil crust ecology, for example under snow, remain little understood.
Macroscopic algae can be found in large open ponds or harvested from the sea. Macro algae includes three distinct groups based on colour: green, brown and red. They are unique in containing secondary metabolites that can be extracted and used for various purposes. This review examines the antimicrobial properties (bacteria, viruses and fungi) of macro algae and its extracts to improve poultry health and performance. This includes body weight gain, feed conversion efficiency and carcass yield improvements in broilers and egg weight and shell quality in layers. As an example, in one study, 35-day body weight of broilers was increased 7.6% with the inclusion of 0.5% Undaria pinnatifida (brown macroalgae) to the diet. The investigations discussed show the diversity of the species available and broad scope where research has been done and the potential for the future.
Investigations were conducted on Euglena gracilis Klebs strain Z to determine the effects of fluometuron [1,2-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea], MSMA (monosodium methanearsonate), glyphosate [N-(phosphonomethyl)glycine], and metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] on cell number, chlorophyll content, and photosynthesis. Euglena cell number was reduced by 65% or more after 48 h with fluometuron levels above 4 X 10-5M. MSMA at 6 X 10-4M reduced cell number 42% after 144 h exposure. Chlorophyll content was reduced 33 to 80% by metribuzin levels of 2 X 10-6M or greater, and fluometuron inhibited chlorophyll content by 30% or more from 4 X 10-6M or greater concentrations. Chlorophyll was reduced 21 to 69% by treatment with glyphosate at 3 X 10-3M, but MSMA appeared to have little effect on chlorophyll except at the high level of 6 X 10-4M at 48 h. Photosynthesis was reduced 50% or more with metribuzin levels above 9 X 10-7M and with fluometuron above 9 X 10-5M. MSMA reduced photosynthesis by 20% at the 6 X 10-3M level, and glyphosate slightly reduced photosynthesis at levels below 1.2 X 10-4M but slightly stimulated it above that level. Chronic effects (Euglena exposed to herbicides 96 h prior to measurement) on photosynthesis indicated a more pronounced reduction from fluometuron than from short-term exposure, little change with glyphosate, but less reduction with metribuzin than from short-term exposure. Metribuzin caused increased respiration rates of 100 to 200% after 100 min of exposure. Respiration was stimulated 20% by glyphosate and relatively unaffected by the other compounds. Removal of Euglena from metribuzin- and fluometuron-treated media to non-treated media resulted in increased levels of chlorophyll to near that of the control. These results suggest that use of these herbicides is not detrimental to non-target algae if the exposure is not intensive.
Pollen and algae from Owens Lake in eastern California provide evidence for a series of climatic oscillations late in the last glaciation. Juniper woodland, which dominated the Owens Valley from 16,200 to 15,500 cal yr B.P., suggests much wetter conditions than today. Although still wetter and cooler than today, the area then became fairly warm and dry, with woodland being replaced by shrubs (mainly sagebrush) from 15,500 to 13,100 cal yr B.P. Next, Chenopodiaceae (shadscale) increased, woody species declined, and lake levels fell—all evidence for a brief (ca. 100–200 yr) drought about 13,000 cal yr B.P. The climate continued to oscillate between wet and dry from 13,000 to 11,000 cal yr B.P. After 11,000 cal yr B.P., low lake levels and the increased dominance of desert shrubs indicate the beginning of warm, dry Holocene conditions. The region's climate was unstable during the Younger Dryas but uncertainities in dating prevent identification of the Younger Dryas interval in the Owens Lake record. Comparison of the Owens Lake record with studies in the Sierra Nevada and Great Basin suggest that the climate was generally wetter between 13,000 and 11,000 cal yr B.P., with warmer summers, although no consistent pattern of climate change emerges.
The objective of this study was to evaluate the effect of the dietary inclusion of 6 g/kg dry matter intake of an unextracted Aurantiochytrium limacinum algae (AURA) in mid-lactation Italian Friesian cows under commercial conditions on milk yield, milk composition and docosahexaenoic acid (DHA) content. Cows were allocated to two groups (n = 18; 108.2 ± 66.1 and 104.4 ± 54.6 days in milk, control and treated groups, respectively). Feeding AURA for 84 d had no effect on dry matter intake, body condition score or weight gain, but did improve milk yield by 1.9 kg/cow/d (+5.4%; P < 0.1) over the course of the experiment. Milk fat concentration declined by 12% (P < 0.0001) without any significant change in 4% fat corrected milk, protein or lactose. Supplementing AURA for 12 weeks substantially altered the fatty acid profile of milk compared with milk from CON-fed cows such that the proportion of unsaturated fatty acids increased, omega-3 fatty acid content increased by 73.1% (P < 0.0001) and was accompanied by a favourable increase in the omega-3:6 fatty acid ratio by 75.0% (P < 0.0001). The AURA supplement, during day 7–84, increased the DHA concentration to 0.37 g /100 g milk total fatty acids (P < 0.0001) with a mean transfer efficiency of 18.1% from feed to milk. Together these results indicated that supplementing a dairy cow diet with DHA-rich microalgae is a feasible and efficient means for creating DHA-enriched milk for human consumption.
Scientific research has always been concerned with aspects of human health. There are several systems of medicines besides the globally accepted allopathy, which are based on compounds originating from natural products. Recent research has been centred around validation of the traditional knowledge on medicinal products. The traditional systems in India, China and forklore medicines in other parts of the world have indicated the potential of natural products consist of various chemical compounds that could be used as drugs. The search for drugs against five major dreadful diseases namely, cancer, AIDS, heart disease, diabetes and pulmonary disorders that attack the present day human from natural products has been in progress for some time. Microbes, plants and animals are the sources of natural products. In the past five decades, the research on bioactive chemicals from marine algae has been incited and several compounds with biological activity were isolated from algae. Generally, these are secondary metabolites produced for chemical defence against the biotic pressure of predators, consumers and epibionts. These potential drugs are now attracting considerable attention from the pharmaceutical industries due to the necessity of identifying substances that could be utilized for novel therapeutic purposes. Several compounds such as alginate, carrageenans, sulphated and halogenated polysachcharise and other derivatives have been shown to provide drugs that could be antiviral, anticancer and antimicrobial. The present account is on the potential of marine macro-algae for medicinally important products.
The rocky intertidal communities of Ireland contain a mix of cold- and warm-adapted species, however the spatial distribution of these communities has not been investigated in a systematic way. Based on a benthic community dataset collected in 2003 at 63 sites, several statistical analyses were combined with the aims of (i) detecting groups of similar communities and their spatial arrangement, (ii) relating these groups to environmental factors and (iii) identifying the species that drive the different community groups. Sørensen's index suggested two marine community groups, one of the east and south-east (termed ‘east’) and the other in the west, south-west and north (termed ‘west’). A second partition based on combined wave exposure and sea surface chlorophyll comprised four groups, as did a further partition based on combined sea surface and air temperatures. The spatial arrangement of wave height plus chlorophyll conditions agreed reasonably well with the binary marine community partition, but the temperature partition did not. The ‘east’ community appeared to be associated with low wave height and chlorophyll conditions. The species that were most influential to the ‘east’ community were Balanus crenatus, Austrominius modestus and Fucus vesiculosus. The ‘west’ sites were associated with high wave height/low chlorophyll (with some variation in this due to local shelter) and the species Paracentrotus lividus, Chthamalus stellatus, Alaria esculenta and Himanthalia elongata. A longitudinal pattern rather than one associated with latitude was evident in this marine community and local drivers rather than temperature clines appeared most important for the dominant community patterns.
Calcium is considered important in buffering excess stomach acid in mammals, including horses. Control of stomach acid is important in preventing the development of ulcers within the stomach lining, which, in horses, are considered to be caused by acid splashing. Algae supplements contain various minerals which are in natural form, as seen in all plant and feedstuffs. The current trial was conducted to examine if a high calcium algae supplement had any impact on gastric ulceration in horses, which may be due to buffering stomach acid, reducing the pH in a gradual manner, without resorting to medication. Ten horses, of either thoroughbred, standardbred or sport horse breed, were selected on the basis of the presence of ulcers in their stomach, as ascertained by endoscopy. The average ulceration score before algae supplementation was 2.2 ± 0.75 according to the EGUC scoring system. The horses were then maintained on their normal diet (unchanged from the initial ulcer scoring) by the owner with the addition of 40 g per day of the high calcium, algae based Maxia Complete® (Seahorse Supplements Ltd, Christchurch, NZ) for thirty days (T30). All horses were then re endoscoped to assess any change in ulceration score. All horses showed a significant improvement in ulcer score, with seven having a score of zero (fully healed, no evidence of further ulceration) and two with a score of one (some residual inflammation or keratinosis in areas of healed ulcers). This resulted in a mean score of 0.3 ± 0.48 (P < 0.0001: T0 versus T30) at the end of the study. This trial demonstrated that feeding an organic form of high calcium from algae reduced ulceration in horses.
Lichenization is a symbiotic ecological strategy that is widely distributed among the fungi, but in which the diversity of partners is relatively poorly known. Limited morphological diversity has hindered the recognition of true diversity in many lichen fungi, and also in their algal partners. In the temperate and boreal zones, the crustose microlichens are the most speciose but arguably the least studied, particularly in terms of their photobiont partners. In this study, we sampled eight species of Micarea s. str. collected from Europe, culturing and sequencing their green-algal partners using chloroplast (rbcL) and nuclear ribosomal (nucSSU) markers. All specimens collected in Great Britain were associated with members of Coccomyxa (including Pseudococcomyxa), but in the smaller sample of Ukrainian material, both Coccomyxa and Elliptochloris were found. This study extends the known range of fungal hosts for symbionts in the genus Coccomyxa, and supports earlier findings that a separate lineage of predominantly non-symbiotic Coccomyxa exists.
Wright Valley, Victoria Land contains numerous aquatic habitats suitable for the growth of algae in summer. Excepting diatoms and lichen phycobionts, algal diversity and distribution in the valley was documented. Using cultures and environmental cloning eight cyanobacterial and 14 eukaryotic species were revealed. The cyanobacterium Microcoleus vaginatus and the chlorophycean Chlorococcum sp. 1 were the most common, both occurring in more than one habitat (ponds, soils or streams). Ponds harboured the most diverse communities. Habitat specialization was rare. Chlamydomonads were not found outside ponds, but species capable of zoospore production were able to colonize ponds and soils. Nostocalean cyanobacteria were not detected. Results suggest dispersal within and between valleys, with little evidence of Antarctic endemism. All but one cyanobacterium with similar internally transcribed spacer (ITS) length to clones from Miers Valley proved to be different species when 16S rRNA gene sequences were also considered; thus, ITS length is unreliable for assessing identity and biogeography of these cyanobacteria. Comparison with a 454 16S rRNA gene soil dataset from Wright Valley indicated the occurrence of only one of the cyanobacterial species, the distribution of which may be limited by salinity.