We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short note, we show that every convex, order-bounded above functional on a Fréchet lattice is automatically continuous. This improves a result in Ruszczyński and Shapiro ((2006) Mathematics of Operations Research31(3), 433–452.) and applies to many deviation and variability measures. We also show that an order-continuous, law-invariant functional on an Orlicz space is strongly consistent everywhere, extending a result in Krätschmer et al. ((2017) Finance and Stochastics18(2), 271–295.).
It is known that a countable
$\omega $
-categorical structure interprets all finite structures primitively positively if and only if its polymorphism clone maps to the clone of projections on a two-element set via a continuous clone homomorphism. We investigate the relationship between the existence of a clone homomorphism to the projection clone, and the existence of such a homomorphism which is continuous and thus meets the above criterion.
We present a general framework for automatic continuity results for groups of isometries of metric spaces. In particular, we prove automatic continuity property for the groups of isometries of the Urysohn space and the Urysohn sphere, i.e. that any homomorphism from either of these groups into a separable group is continuous. This answers a question of Ben Yaacov, Berenstein and Melleray. As a consequence, we get that the group of isometries of the Urysohn space has unique Polish group topology and the group of isometries of the Urysohn sphere has unique separable group topology. Moreover, as an application of our framework we obtain new proofs of the automatic continuity property for the group $\text{Aut}([0,1],\unicode[STIX]{x1D706})$, due to Ben Yaacov, Berenstein and Melleray and for the unitary group of the infinite-dimensional separable Hilbert space, due to Tsankov.
We define a simple criterion for a homogeneous, complete metric structure X that implies that the automorphism group Aut(X) satisfies all the main consequences of the existence of ample generics: it has the automatic continuity property, the small index property, and uncountable cofinality for nonopen subgroups. Then we verify it for the Urysohn space $$, the Lebesgue probability measure algebra MALG, and the Hilbert space $\ell _2 $, thus proving that Iso($$), Aut(MALG), $U\left( {\ell _2 } \right)$, and $O\left( {\ell _2 } \right)$ share these properties. We also formulate a condition for X which implies that every homomorphism of Aut(X) into a separable group K with a left-invariant, complete metric, is trivial, and we verify it for $$, and $\ell _2 $.
A homomorphism from a completely metrizable topological group into a free product of groups whose image is not contained in a factor of the free product is shown to be continuous with respect to the discrete topology on the range. In particular, any completely metrizable group topology on a free product is discrete.
We introduce the concept of a rare element in a non-associative normed algebra and show that the existence of such an element is the only obstruction to continuity of a surjective homomorphism from a non-associative Banach algebra to a unital normed algebra with simple completion. Unital associative algebras do not admit any rare elements, and hence automatic continuity holds.
A map θ:A→B between algebras A and B is called n-multiplicative if θ(a1a2⋯an)=θ(a1) θ(a2)⋯θ(an) for all elements a1,a2,…,an∈A. If θ is also linear then it is called an n-homomorphism. This notion is an extension of a homomorphism. We obtain some results on automatic continuity of n-homomorphisms between certain topological algebras, as well as Banach algebras. The main results are extensions of Johnson’s theorem to surjective n-homomorphisms on topological algebras, a theorem due to C. E. Rickart in 1950 to dense range n-homomorphisms on topological algebras and two theorems due to E. Park and J. Trout in 2009 to * -preserving n-homomorphisms on lmc * -algebras.
A ℂ-linear map θ (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality preserving’ if 〈θ(x),θ(y)〉=0 whenever 〈x,y〉=0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0(Ω)-module E into another Hilbert C0(Ω) -module F that satisfies a weaker notion of C0 (Ω) -linearity (called ‘localness’), then θ is bounded and there exists ϕ∈Cb (Ω)+ such that 〈θ(x),θ(y)〉=ϕ⋅〈x,y〉 for all x,y∈E.
It is proved that any countable index, universally measurable subgroup of a Polish group is open. By consequence, any universally measurable homomorphism from a Polish group into the infinite symmetric group S∞ is continuous. It is also shown that a universally measurable homomorphism from a Polish group into a second countable, locally compact group is necessarily continuous.
In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied.
We give a description of the continuity ideals and the kernels of homomorphisms from the algebras of continuous functions on locally compact spaces into Banach algebras. We also construct families of prime ideals satisfying a certain intriguing property in the algebras of continuous functions.
The paper [3] proved a necessary algebraic condition for a Banach algebra A with finite-dimensional radical R to have a unique complete (algebra) norm, and conjectured that this condition is also sufficient. We extend the above theorem. The conjecture is confirmed in the case where A is separable and A/R is commutative, but is shown to fail in general. Similar questions for derivations are discussed.
Let $G$ be a $\sigma$-compact, locally compact
group and $\mathcal I$ be a closed 2-sided ideal
with finite codimension in $L^1(G)$. It is shown
that there are a closed left ideal ${\mathcal L}$
having a right bounded approximate identity and
a closed right ideal ${\mathcal R}$ having a left
bounded approximate identity such that
${\mathcal I} = {\mathcal L} + {\mathcal R}$.
The proof uses ideas from the theory of
boundaries of random walks on groups. 2000 Mathematics Subject Classification:
primary 43A20;
secondary 42A85, 43A07, 46H10, 46H40, 60B11.
We study the stability of linear filters associated with certain types of linear difference equations with variable coefficients. We show that stability is determined by the locations of the poles of a rational transfer function relative to the spectrum of an associated weighted shift operator. The known theory for filters associated with constant-coefficient difference equations is a special case.
A group is said to be factorizable if it has a finite number of abelian subgroups, H1, H2, … Hn, such that G = H1H2 … Hn. It is shown that, if G is a factorizable or connected locally compact group, then every derivation from L1 (G) to an arbitrary L1 (G)-bimodule X is continuous.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.