We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the problem of determining the holomorphic self maps of the unit disc that induce a bounded composition operator on Dirichlet-type spaces. We find a class of symbols $\varphi $ that induce a bounded composition operator on the Dirichlet-type spaces, by applying results of the multidimensional theory of composition operators for the weighted Bergman spaces of the bi-disc.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
We characterize the membership in the Schatten ideals $\mathcal {S}_p$, $0<p<\infty $, of composition operators acting on weighted Dirichlet spaces. Our results concern a large class of weights. In particular, we examine the case of perturbed superharmonic weights. Characterization of composition operators acting on weighted Bergman spaces to be in $\mathcal {S}_p$ is also given.
Given a holomorphic self-map
$\varphi $
of
$\mathbb {D}$
(the open unit disc in
$\mathbb {C}$
), the composition operator
$C_{\varphi } f = f \circ \varphi $
,
$f \in H^2(\mathbb {\mathbb {D}})$
, defines a bounded linear operator on the Hardy space
$H^2(\mathbb {\mathbb {D}})$
. The model spaces are the backward shift-invariant closed subspaces of
$H^2(\mathbb {\mathbb {D}})$
, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
Li et al. [A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal. 267(12) (2014), 4753-4774] proved a spectral radius type formula for the approximation numbers of composition operators on analytic Hilbert spaces with radial weights and on $H^{p}$ spaces, $p\geq 1$, involving Green capacity. We prove that their formula holds for a wide class of Banach spaces of analytic functions and weights.
We investigate the boundedness, compactness, invertibility and Fredholmness of weighted composition operators between Lorentz spaces. It is also shown that the classes of Fredholm and invertible weighted composition maps between Lorentz spaces coincide when the underlying measure space is nonatomic.
We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order), Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete characterization of those composition operators that are similar to an isometry on these various Banach spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on these various Banach spaces.
In this paper we study composition operators on Hardy–Orlicz spaces on multiply connected domains whose boundaries consist of finitely many disjoint analytic Jordan curves. We obtain a characterization of order-bounded composition operators. We also investigate weak compactness and the Dunford–Pettis property of these operators.
The algebra of all Dirichlet series that are uniformly convergent in the half-plane of complex numbers with positive real part is investigated. When it is endowed with its natural locally convex topology, it is a non-nuclear Fréchet Schwartz space with basis. Moreover, it is a locally multiplicative algebra but not a Q-algebra. Composition operators on this space are also studied.
We use a generalised Nevanlinna counting function to compute the Hilbert–Schmidt norm of a composition operator on the Bergman space $L_{a}^{2}(\mathbb{D})$ and weighted Bergman spaces $L_{a}^{1}(\text{d}A_{\unicode[STIX]{x1D6FC}})$ when $\unicode[STIX]{x1D6FC}$ is a nonnegative integer.
We study the image of the model subspace ${{K}_{\theta }}$ under the composition operator ${{C}_{\varphi }}$, where $\varphi $ and $\theta $ are inner functions, and find the smallest model subspace which contains the linear manifold ${{C}_{\varphi }}{{K}_{\theta }}$. Then we characterize the case when ${{C}_{\varphi }}$ maps ${{K}_{\theta }}$ into itself. This case leads to the study of the inner functions $\varphi $ and $\psi $ such that the composition $\psi \,\text{o}\,\varphi $ is a divisor of $\psi $ in the family of inner functions.
$$C\left( f \right)\left( Z \right)=\frac{1}{Z}\int_{0}^{Z}{f\left( \zeta \right)d}\zeta,$$
and its companion operator $\mathcal{T}$ on Hardy spaces of the upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as resolvents for appropriate semigroups of composition operators and we find the norm and the spectrum in each case. The relation of $\mathcal{C}$ and $\mathcal{T}$ with the corresponding Cesàro operators on Lebesgue spaces ${{L}^{p}}\left( \mathbb{R} \right)$ of the boundary line is also discussed.
We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and, moreover, be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.
While there is a large variety of univalently induced closed range composition operators on the Bloch space, we show that the only univalently induced, closed range, composition operators on the Bloch-type spaces ${{B}^{\alpha }}$ with $\alpha \,\ne \,1$ are the ones induced by a disc automorphism.
In general, multiplication of operators is not essentially commutative in an algebra generated by integral-type operators and composition operators. In this paper, we characterize the essential commutativity of the integral operators and composition operators from a mixed-norm space to a Bloch-type space, and give a complete description of the universal set of integral operators. Corresponding results for boundedness and compactness are also obtained.
We investigate the composition operators Cφ acting on the Bergman space of the unit disc D, where φ is a holomorphic self-map of D. Some new conditions for Cφ to belong to the Schatten class 𝒮p are obtained. We also construct a compact composition operator which does not belong to any Schatten class.
We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.
We give a necessary and sufficient condition for a composition operator on an $\alpha$-Bloch space with $\alpha \,\ge \,1$ to be bounded below. This extends a known result for the Bloch space due to P. Ghatage, J. Yan, D. Zheng, and H. Chen.
We consider differences of composition operators between given weighted Banach spaces or Hv0 of analytic functions with weighted sup-norms and give estimates for the distance of these differences to the space of compact operators. We also study boundedness and compactness of the operators. Some examples illustrate our results.