We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electron tomography (ET) has gained increasing attention for the 3D characterization of nanoparticles. However, the missing wedge problem due to a limited tilt angle range is still the main challenge for accurate reconstruction in most experimental TEM setups. Advanced algorithms could in-paint or compensate to some extent the missing wedge artifacts, but cannot recover the missing structural information completely. 360° ET provides an option to solve this problem by tilting a needle-shaped specimen over the full tilt range and thus filling the missing information. However, sample preparation especially for fine powders to perform full-range ET is still challenging, thus limiting its application. In this work, we propose a new universal sample preparation method that enables the transfer of selected individual nanoparticle or a few separated nanoparticles by cutting a piece of carbon film supporting the specimen particles and mounting them onto the full-range tomography holder tip with the help of an easily prepared sharp tungsten tip. This method is demonstrated by 360° ET of Pt@TiO2 hollow cage catalyst showing high quality reconstruction without missing wedge.
Indium (In) and other low melting point metals are used as interconnects in a variety of hybridized circuits and a full understanding of the metallurgy of these interconnects is important to the reliability and performance of the devices. This paper shows that room temperature focused ion beam (FIB) preparation of cross-sections, using Ga+ or Xe+ can result in artifacts that obscure the true In microbump structure. The use of modified milling strategies to minimize the increased local sample temperature are shown to produce cross-sections that are representative of the In bump microstructure in some sample configurations. Furthermore, cooling of the sample to cryogenic temperatures is shown to reliably eliminate artifacts in FIB prepared cross-sections of In bumps allowing the true bump microstructure to be observed.
A direct comparison between electron transparent transmission electron microscope (TEM) samples prepared with gallium (Ga) and xenon (Xe) focused ion beams (FIBs) is performed to determine if equivalent quality samples can be prepared with both ion species. We prepared samples using Ga FIB and Xe plasma focused ion beam (PFIB) while altering a variety of different deposition and milling parameters. The samples’ final thicknesses were evaluated using STEM-EELS t/λ data. Using the Ga FIB sample as a standard, we compared the Xe PFIB samples to the standard and to each other. We show that although the Xe PFIB sample preparation technique is quite different from the Ga FIB technique, it is possible to produce high-quality, large area TEM samples with Xe PFIB. We also describe best practices for a Xe PFIB TEM sample preparation workflow to enable consistent success for any thoughtful FIB operator. For Xe PFIB, we show that a decision must be made between the ultimate sample thickness and the size of the electron transparent region.
Low-Z nanocrystalline diamond (NCD) grids have been developed to reduce spurious fluorescence and avoid X-ray peak overlaps or interferences between the specimen and conventional metal grids. The low-Z NCD grids are non-toxic and safe to handle, conductive, can be subjected to high-temperature heating experiments, and may be used for analytical work in lieu of metal grids. Both a half-grid geometry, which can be used for any lift-out method, or a full-grid geometry that can be used for ex situ lift-out or thin film analyses, can be fabricated and used for experiments.
The effect of sample preparation on a pre-aged Al–Mg–Si–Cu alloy has been evaluated using atom probe tomography. Three methods of preparation were investigated: electropolishing (control), Ga+ focused ion beam (FIB) milling, and Xe+ plasma FIB (PFIB) milling. Ga+-based FIB preparation was shown to introduce significant amount of Ga contamination throughout the reconstructed sample (≈1.3 at%), while no Xe contamination was detected in the PFIB-prepared sample. Nevertheless, a significantly higher cluster density was observed in the Xe+ PFIB-prepared sample (≈25.0 × 1023 m−3) as compared to the traditionally produced electropolished sample (≈3.2 × 1023 m−3) and the Ga+ FIB sample (≈5.6 × 1023 m−3). Hence, the absence of the ion milling species does not necessarily mean an absence of specimen preparation defects. Specifically, the FIB and PFIB-prepared samples had more Si-rich clusters as compared to electropolished samples, which is indicative of vacancy stabilization via solute clustering.
The transformation of unstable austenite to ferrite or α′ martensite as a result of exposure to Xe+ or Ga+ ions at room temperature was studied in a 304 stainless steel casting alloy. Controlled Xe+ and Ga+ ion beam exposures of the 304 were carried out at a variety of beam/sample geometries. It was found that both Ga+ and Xe+ ion irradiation resulted in the transformation of the austenite to either ferrite or α′ martensite. In this paper, we will refer to the transformation product as a BCC phase. The crystallographic orientation of the transformed area was controlled by the orientation of the austenite grain and was consistent with either the Nishiyama–Wasserman or the Kurdjumov–Sachs orientation relationships. On the basis of the Xe+ and Ga+ ion beam exposures, the transformation is not controlled by the chemical stabilization of the BCC phase by the ion species, but is a result of the disorder caused by the ion-induced recoil motion and subsequent return of the disordered region to a more energetically favorable phase.
Two types of mineral fillers, talc and mica, were compounded into polypropylene (PP) via a twin-screw extruder. The morphologies and mechanical properties of the resultant composites were investigated. The dispersion of minerals in PP was observed using Focused Ion Beam (FIB) techniques. The particle size distribution (PSD) and aspect ratio (AR) of particles in the polymer phase were obtained from FIB image analysis. It was found that FIB imaging displays directly the micron to mesoscale level dispersion of particles in polymeric composites. The technique has significant potential for characterizing such materials, having some advantages over ‘traditional’ scanning and transmission electron microscopy in terms of generating representative data in a realistic timescale. The PSD and AR distribution and degree of dispersion in the composites give insights into the modification of mechanical properties of the composites studied.
The mineralogy of the glazed surfaces of Japanese sekishu roof tiles covered by a crustose lichen – Lecidella asema (Nyl.) Knoph & Hertel – was investigated using transmission electron microscopy (TEM). The study sought to identify the Ti-Fe mineral observed as a low concentration of Ti and Fe in a previous study of the glazed surfaces of the same roof tile. The TEM analysis revealed that: (1) a thin layer of the Ti-Fe mineral pseudobrookite exists on the glaze surface; (2) the pseudobrookite consists of well-ordered single crystals, continuously and widely distributed on the glaze surface.
The capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.
Micro-electro-mechanical systems (MEMS)-based heating holders offer exceptional control of temperature and heating/cooling rates for transmission electron microscopy experiments. The use of such devices is relatively straightforward for nano-particulate samples, but the preparation of specimens from bulk samples by focused ion beam (FIB) milling presents significant challenges. These include: poor mechanical integrity and site selectivity of the specimen, ion beam damage to the specimen and/or MEMS device during thinning, and difficulties in transferring the specimen onto the MEMS device. Here, we describe a novel FIB protocol for the preparation and transfer of specimens from bulk samples, which involves a specimen geometry that provides mechanical support to the electron-transparent region, while maximizing the area of that region and the contact area with the heater plate on the MEMS chip. The method utilizes an inclined stage block that minimizes exposure of the chip to the ion beam during milling. This block also allows for accurate and gentle placement of the FIB-cut specimen onto the chip by using simultaneous electron and ion beam imaging during transfer. Preliminary data from Si and Ag on Si samples are presented to demonstrate the quality of the specimens that can be obtained and their stability during in situ heating experiments.
The xenon plasma focused ion beam instrument (PFIB), holds significant promise in expanding the applications of focused ion beams in new technology thrust areas. In this paper, we have explored the operational characteristics of a Tescan FERA3 XMH PFIB instrument with the aim of meeting current and future challenges in the semiconductor industry. A two part approach, with the first part aimed at optimizing the ion column and the second optimizing specimen preparation, has been undertaken. Detailed studies characterizing the ion column, optimizing for high-current/high mill rate activities, have been described to support a better understanding of the PFIB. In addition, a novel single-crystal sacrificial mask method has been developed and implemented for use in the PFIB. Using this combined approach, we have achieved high-quality images with minimal artifacts, while retaining the shorter throughput times of the PFIB. Although the work presented in this paper has been performed on a specific instrument, the authors hope that these studies will provide general insight to direct further improvement of PFIB design and applications.
In this paper the potential of time-of-flight secondary ion mass spectroscopy combined with focused ion beam technology to characterize the composition of a solid oxide fuel cell (SOFC) in three-dimension is demonstrated. The very high sensitivity of this method allows even very small amounts of elements/compounds to be detected and localized. Therefore, interlayer diffusion of elements between porous electrodes and presence of pollutants can be analyzed with a spatial resolution of the order of 100 nm. However, proper element recognition and mass interference still remain important issues. Here, we present a complete elemental analysis of the SOFC as well as techniques that help to validate the reliability of obtained results. A discussion on origins of probable artifacts is provided.
There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.
The ex situ lift out (EXLO) adhesion forces are reviewed and new applications of EXLO for focused ion beam (FIB)-prepared specimens are described. EXLO is used to manipulate electron transparent specimens on microelectromechanical systems carrier devices designed for in situ electron microscope analysis. A new patented grid design without a support film is described for EXLO. This new slotted grid design provides a surface for holding the specimen in place and also allows for post lift out processing. Specimens may be easily manipulated into a backside orientation to reduce FIB curtaining artifacts with this slotted grid. Large EXLO specimens can be manipulated from Xe+ plasma FIB prepared specimens. Finally, applications of EXLO and manipulation of FIB specimens using a vacuum probe lift out method are shown. The vacuum probe provides more control for placing specimens on the new slotted grids and also allows for easy manipulation into a backside configuration.
This paper investigates the adhesive interface in a polymer/metal (polyethylene terephthalate/steel) laminate that is subjected to uniaxial strain. Cross-sections perpendicular to such interfaces were created with a focused ion beam and imaged with scanning electron microscopy during straining in the electron microscope. During in situ straining, glide steps formed by the steel caused traction at the interface and initiated crazes in the polyethylene terephthalate (PET). These crazes readily propagated along the free surface of the PET layer. Similar crazing has not been previously encountered in laminates that were pre-strained or in numerical calculations. The impact of focused ion beam treatments on mechanical properties of the polymer/metal laminate system was therefore investigated. It was found that mechanical properties such as toughness of PET are dramatically influenced by focused ion beam etching. It was also found that this change in mechanical properties has a different effect on the pre-strained and in situ strained samples.
This article summarizes recent technological improvements of focused ion beam tomography. New in-lens (in-column) detectors have a higher sensitivity for low energy electrons. In combination with energy filtering, this leads to better results for phase segmentation and quantitative analysis. The quality of the 3D reconstructions is also improved with a refined drift correction procedure. In addition, the new scanning strategies can increase the acquisition speed significantly. Furthermore, fast spectral and elemental mappings with silicon drift detectors open up new possibilities in chemical analysis. Examples of a porous superconductor and a solder with various precipitates are presented, which illustrate that combined analysis of two simultaneous detector signals (secondary and backscattered electrons) provides reliable segmentation results even for very complex 3D microstructures. In addition, high throughput elemental analysis is illustrated for a multi-phase Ni-Ti stainless steel. Overall, the improvements in resolution, contrast, stability, and throughput open new possibilities for 3D analysis of nanostructured materials.
Aberration-corrected scanning transmission electron microscopy images of the In0.15Ga0.85N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer’s upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.
Focused ion beam is a powerful method for cross-sectional transmission electron microscope sample preparation due to being site specific and not limited to certain materials. It has, however, been difficult to apply to many nanostructured materials as they are prone to damage due to extending from the surface. Here we show methods for focused ion beam sample preparation for transmission electron microscopy analysis of such materials, demonstrated on GaAs–GaInP core shell nanowires. We use polymer resin as support and protection and are able to produce cross-sections both perpendicular to and parallel with the substrate surface with minimal damage. Consequently, nanowires grown perpendicular to the substrates could be imaged both in plan and side view, including the nanowire–substrate interface in the latter case. Using the methods presented here we could analyze the faceting and homogeneity of hundreds of adjacent nanowires in a single lamella.
Microstructures of 3C–SiC grown by chemical vapor deposition (CVD) technique on undulant silicon substrate and a further developed technique called switch-back epitaxy (SBE) were studied using transmission electron microscopy (TEM). In case of the CVD sample, the density of the stacking faults was found to be significantly decreasing along growth direction. Sites of collision of stacking faults were observed using high-resolution transmission electron microscopy. Some of the stacking faults were observed to have disappeared after colliding into each other. The stacking faults were identified to be on the same type of plane and had the same type of displacement vector not only in CVD and SBE but also in the epitaxial layer on the SBE SiC samples.
Leaf stomatal characteristics of Siberian elm (Ulmus pumila) were investigated by electron microscopy and white light scanning interferometry. On the basis of average annual precipitations, two types of tree specimens were collected from Korea, China, and Mongolia: (1) trees under normal environmental conditions and (2) trees under arid conditions. Field emission scanning electron microscopy revealed oval-shaped stomata on the lower surface, and they were ca. 20 μm in width. In-lens secondary electron imaging showed differences in electron density and stomatal pore depth between the two types. According to the line profile analysis by white light scanning interferometry, stomata under arid conditions appeared to have higher levels of the stomatal pore depth than ones under normal conditions. Focused ion beam–field emission electron microscopy supported the increased stomatal pore depth with the increasing drought stress gradient. These results suggest that complementary microscopy can be employed to unravel the adaptive phenotypic plasticity of Siberian elm in response to drought stress.