We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Sigma $ be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-$\Sigma $ fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of $\Sigma $ are invertible. The present paper focuses on the topic of comparison between the theory developed in earlier papers concerning pro-$\Sigma $ fundamental groups and various discrete versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the section conjecture and Grothendieck conjecture. This portion of the theory is purely combinatorial and essentially follows from a result concerning the existence of fixed points of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to scheme theory. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of (discrete) subgroups of such groups hold if and only if analogous properties hold for the closures of these subgroups in the profinite completions of the discrete fundamental groups under consideration. These results make possible a fairly straightforward translation, into discrete versions, of pro-$\Sigma $ results obtained in previous papers by the authors. Finally, we discuss a construction that was considered previously by M. Boggi in the discrete case from the point of view of the present paper.
For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$-CW-complex is determined by the Euler characteristic $\chi (F)$. (He also has similar results for compact Lie group actions.) We show that the analogous problem for $F$ to be the fixed point set of a finite $G$-CW-complex of some given homotopy type is still determined by the Euler characteristic. Using trace maps on $K_0$ [2, 7, 18], we also see that there are interesting roles for the fundamental group and the component structure of the fixed point set.
For a finite abelian group A, the Reidemeister number of an endomorphism φ is the same as the number of fixed points of φ, and the Reidemeister spectrum of A is completely determined by the Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian p-group P, we introduce a new number associated to an automorphism ψ of P that captures the number of fixed points of ψ and its (additive) multiples, we provide upper and lower bounds for that number, and we prove that every power of p between those bounds occurs as such a number.
Kenneth Wilson introduced the renormalization-group (RG) approach in 1971. This approach gave new life to the study of the Ising model. The implications of this breakthrough were immediately recognized by researchers in the field, and Wilson and the RG technique were awarded the Nobel Prize in Physics soon thereafter. One of the distinguishing features of RG methods is that they explicitly include the effects of fluctuations. In addition, the RG approach gives a natural understanding of the universality that is seen in critical phenomena in general, and in critical exponents in particular. In many respects, the RG approach gives a deeper understanding not only of the Ising model itself, but of all aspects of critical phenomena. The original version of the renormalization-group method was implemented in momentum space – which is a bit like studying a system with Fourier transforms. It is beyond the scope of this presentation. Following that, various investigators extended the approach to position space, which is more intuitive in many ways and is certainly much easier to visualize. We present the basics of position-space renormalization group methods in this chapter. We will also explain the origin of the terms “renormalization” and “group” in the RG part of the name.
Celebrating 100 years of the Banach contraction principle, we prove some fixed point theorems having all ingredients of the principle, but dealing with common fixed points of a contractive semigroup of nonlinear mappings acting in a modulated topological vector space. This research follows the ideas of the author’s recent papers [‘On modulated topological vector spaces and applications’, Bull. Aust. Math. Soc.101 (2020), 325–332, and ‘Normal structure in modulated topological vector spaces’, Comment. Math.60 (2020), 1–11]. Modulated topological vector spaces generalise, among others, Banach spaces and modular function spaces. The interest in modulars reflects the fact that the notions of ‘norm like’ but ‘noneuclidean’ (and not even necessarily convex) constructs to measure a level of proximity between complex objects are frequently used in science and technology. To prove our fixed point results in this setting, we introduce a new concept of Opial sets using analogies with the norm-weak and modular versions of the Opial property. As an example, the results of this work can be applied to spaces like $L^p$ for $p> 0 $, variable Lebesgue spaces $L^{p(\cdot )}$ where $1 \leq p(t) < + \infty $, Orlicz and Musielak–Orlicz spaces.
We obtain conditions of uniform continuity for endomorphisms of free-abelian times free groups for the product metric defined by taking the prefix metric in each component and establish an equivalence between uniform continuity for this metric and the preservation of a coarse-median, a concept recently introduced by Fioravanti. Considering the extension of an endomorphism to the completion, we count the number of orbits for the action of the subgroup of fixed points (respectively periodic) points on the set of infinite fixed (respectively periodic) points. Finally, we study the dynamics of infinite points: for automorphisms and some endomorphisms, defined in a precise way, fitting a classification given by Delgado and Ventura, we prove that every infinite point is either periodic or wandering, which implies that the dynamics is asymptotically periodic.
In this doctoral thesis, we show how the bounded functional interpretation of F. Ferreira and P. Oliva can be used and contribute to the Proof Mining program, a program which aims to extract computational information from mathematical theorems using proof-theoretic techniques. We present a method for the elimination of sequential weak compactness arguments from the quantitative analysis of certain mathematical results. This method works as a “macro” and allowed us to obtain quantitative versions of important results of F. E. Browder, R. Wittmann, and H. H. Bauschke in fixed point theory in Hilbert spaces. Although the theorems of Browder and Wittmann were previously analyzed by U. Kohlenbach using the monotone functional interpretation, it was not clear why such analyses did not require the use of functionals defined by bar recursion. This phenomenon is now fully understood by a theoretical justification for the elimination of sequential weak compactness in the context of the bounded functional interpretation. Bauschke’s theorem is an important generalization of Wittmann’s theorem and its original proof is also analyzed here. The analyses of these results also require a quantitative version of a projection argument which turned out to be simpler when guided by the bounded functional interpretation than when using the monotone functional interpretation. In the context of the theory of monotone operators, results due to Boikanyo/Moroşanu and Xu for the strong convergence of variants of the proximal point algorithm are analyzed and bounds on the metastablility property of these iterations are obtained. These results are the first applications of the bounded functional interpretation to the proof mining of concrete mathematical results.
This chapter introduces the liar paradox from naïve truththeory, and the central dilemma for solving it: any theory of truthwill be incomplete or inconsistent. Various incompleteness optionsfrom classical and paraconsistent logics are considered. Dialetheicparaconsistency – the idea that there are true contradictions– is introduced as an alternative inconsistent option, andits main logical and philosophical features are presented. Aproblematic fixed point theorem is introduced as a possible key toexplaining the paradoxes.
We construct two planar homoeomorphisms $f$ and $g$ for which the origin is a globally asymptotically stable fixed point whereas for $f \circ g$ and $g \circ f$ the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by $f$ and $g$ where each of the maps appears with a certain probability. This planar construction is also extended to any dimension $>$2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
We introduce a notion of modulated topological vector spaces, that generalises, among others, Banach and modular function spaces. As applications, we prove some results which extend Kirk’s and Browder’s fixed point theorems. The theory of modulated topological vector spaces provides a very minimalist framework, where powerful fixed point theorems are valid under a bare minimum of assumptions.
In this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.
We exhibit invariants of smooth projective algebraic varieties with integer values, whose nonvanishing modulo $p$ prevents the existence of an action without fixed points of certain finite $p$-groups. The case of base fields of characteristic $p$ is included. Counterexamples are systematically provided to test the sharpness of our results.
We study best proximity points in the framework of metric spaces with $w$-distances. The results extend, generalise and unify several well-known fixed point results in the literature.
Two new miniature metallic sealed-cells containing the triple point of water, WTP (273.16K) and the triple point of mercury, HgTP (234.3156 K) have been constructed for therealization of the International Temperature Scale of 1990 (ITS-90) at the NationalInstitute of Standards (NIS-Egypt). The new cells will provide facilities for thecalibration of Capsule-type Standard Platinum Resistance Thermometers (CSPRTs). The twocells will complete a multi-cells compartment in order to calibrate CSPRTs in one singleexperiment. The multi-cells compartment contains two other cells; the triple point ofargon (83.8058 K) and the triple point of oxygen (54.3584 K) that has been alreadydeveloped and characterized before [M.G. Ahmed, Y. Hermier, Development of an adiabaticcalorimeter in the range 54 K–273 K in frame of a scientific collaboration LNE-NIS, AIPConf. Proc. 1552, 153 (2013)]. The system can calibrate two CSPRTs at once.The compartment is accommodated in an adiabatic calorimeter. With a special technique, thecalorimeter could go down to a temperature of 52 K using liquid nitrogen and specialpumping system.
Consider a pseudogroup on $( \mathbb{C} , 0)$ generated by two local diffeomorphisms having analytic conjugacy
classes a priori fixed in $\mathrm{Diff} \hspace{0.167em} ( \mathbb{C} , 0)$. We show that a generic pseudogroup as above is such that every
point has a (possibly trivial) cyclic stabilizer. It also follows that these generic
groups possess infinitely many hyperbolic orbits. This result possesses several
applications to the topology of leaves of foliations, and we shall explicitly
describe the case of nilpotent foliations associated to Arnold’s singularities of
type ${A}^{2n+ 1} $.
The primitive finite permutation groups containing a cycle are classified. Of these, only the alternating and symmetric groups contain a cycle fixing at least three points. This removes a primality condition from a classical theorem of Jordan. Some applications to monodromy groups are given, and the contributions of Jordan and Marggraff to this topic are briefly discussed.
We prove the undecidability of Core XPath 1.0 (CXP) [G. Gottlob and C. Koch,inProc. of 17th Ann. IEEE Symp. on Logic in Computer Science,LICS ’02(Copenhagen,July 2002). IEEE CS Press (2002) 189–202.] extended with anInflationary Fixed Point (IFP) operator. More specifically,we provethat the satisfiability problem of this language is undecidable. In fact,the fragment ofCXP+IFP containing only the self and descendant axes is already undecidable.
We follow the idea of generalising the notion of classical iterated function systems, as presented by Mihail and Miculescu. We give their deliberations a more general setting and, using this general approach, study the generic aspect of the problem of existence of an attractor of a function system.