We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Humanity’s situation with climate change is sometimes compared to that of a frog in a slowly boiling pot of water. Most of our climate science takes the form of prediction: telling the frog that in five minutes’ time he will be a little bit warmer. We need more risk assessment: telling the frog that the worst that could happen is he could boil to death, and that this is becoming increasingly likely over time. This approach can give a much clearer picture of the risks of climate change to human health, food security, and coastal cities.
Most research into the impacts of climate change concentrates on what would happen at low degrees of change. We know a great deal about best-case scenarios. Thanks to wilful ignorance among policymakers, and the cultural preferences of scientists, worst-case scenarios are much less considered. We know the least about what matters most.
Bread wheat and durum wheat genotypes were grown in field experiments at two locations in New South Wales, Australia across several years and using two sowing times (‘early’ v. ‘late’). Genotypes were grouped based on genetic similarity. Grain yield, grain size, soil characteristics and daily weather data were collected. The weather data were used to calculate water and heat stress indices for four key growth periods around flowering. Least absolute shrinkage and selection operator (LASSO) was used to predict grain yield and to identify the most influential features (a combination of index and growth period). A novel approach involving the crop water supply–demand ratio effectively summarized water relations during growth. LASSO predicted grain yield quite well (adjusted R2 from 0.57 to 0.98), especially in a set of durum genotypes. However, the addition of other important variables such as lodging score, disease incidence, weed incidence and insect damage could have improved modelling results. Growth period 2 (30 days pre-flowering up to flowering) was the most sensitive for yield loss from heat stress and water stress for most features. Although one group of bread wheat genotypes was more sensitive to water stress (drought) in period 3 (20 days pre-flowering to 10 days post-flowering). Evapotranspiration was a significant positive feature but only in the vegetative phase (pre-flowering, period 1). This study confirms the usefulness of LASSO modelling as a technique to make predictions that could be used to identify genotypes that are suitable candidates for further investigation by breeders for their stress-tolerance ability.
Heat stress from high temperatures has been recognised as a threat to several bird species and one that is likely to increase in severity and frequency as a result of global environmental change. Many seabirds are particularly vulnerable as their adaptations to forage in cold water can make it hard for them to resist heat gain while on land. The African Penguin Spheniscus demersus forages in cool water (10–20°C) but breeds and moults on land where temperatures can exceed 30°C. Little is known about its thermal physiology and when heat stress will occur. Here, we provide the first account of changes in body temperature and behaviour in African Penguins in response to an experimental increase in ambient temperature from 20°C to 35°C. Surprisingly, the highest body temperature observed (39.2°C) was recorded at the start of the study. Presumably, this response in body temperature was due to the stress of transport and handling. Penguins returned to normal body temperature (37.3°C) after 3.5 hours and maintained normothermia for roughly an hour. We then observed the onset of heat storage at an ambient temperature of 29°C, whereafter body temperature increased steadily at a rate of ca.0.2°C per 1°C increase in ambient temperature. Panting commenced at an ambient temperature of 31.4°C, when body temperature was 37.8°C. In addition to panting, penguins changed their posture to facilitate heat dissipation by standing, raising their heads, and extending their flippers. Our results corroborate field observations and support the argument that African Penguins are highly vulnerable to heat stress in the near future as extreme heat events become more severe and frequent due to climate change. Our results also confirm that penguins are sensitive to handling, which elicits a hyperthermic response. Given the general sensitivity of penguins to disturbance, from a conservation perspective, we advise that cautionary measures be implemented at colonies during critical life-history stages.
Early morning flowering (EMF) is a desirable trait in rice to avoid heat stress as temperatures in early morning hours are low compared to afternoon and flowering is the most sensitive stage to heat exposure. Cultivated rice accessions including both Oryza glaberrima and O. sativa were phenotyped for an EMF trait in 2016–2018 in two locations viz. Cotonou in Benin Republic and Ibadan in Nigeria. The initial screening was done in Cotonou in three phases in 2016 dry season, 2017 wet season and 2017 dry season, respectively. The 2093 accessions used in initial screening were subdivided into three groups based on flowering duration ensuring that each accession was grown under conditions which were best suited to their flowering duration. Further screening was done in Ibadan in 2018 dry season and 2018 wet season. Out of 2093 accessions taken in the initial screening only 1754 accessions germinated out of which only 64 accessions exhibited EMF phenotype consistently across the cultivated years, seasons and locations. Among the 64 accessions exhibiting EMF phenotype, 15 accessions also showed an early peak in spikelet opening time (EPSOT) trait, more than 80% flowering before 09:00 h. We conclude that 15 O. glaberrima accessions identified possessing both the EMF and EPSOT traits are suitable donors for use in breeding for heat escape in rice.
One of the critical growth and development stages that is vulnerable to drought and heat stress even in hardy staple crops is germination. Sorghum is a critically essential, resilient, and diverse crop that displays genotypic variations in its ability to withstand such harsh conditions, limiting crop stand and ultimately leading to yield losses. Therefore, the goal of this study was to evaluate the performance of 50 high potential genotypes of African sorghum, including landraces, breeding lines and check varieties to simulated drought and heat stress at germination stage. The study used a split plot arrangement for temperature treatments, laid in a completely randomized design with three replications. Final germination percentage, mean germination time, germination index and coefficient variation of germination time (CVt) were determined. Data was subjected to generalized linear model, principal component analysis, hierarchical agglomerative cluster analysis and principal coordinate analysis to determine statistical differences in genotypes and visualize groups of genotypes according to their overall performance in assessed germination parameters. Drought stress and supra-optimal temperatures suppressed and delayed germination. The genotypes were grouped into six distinct clusters based on their performance. Genotypes NPGRC1593, NPGRC1782, NPGRC1476 and IS224426 performed exceptionally well under both stressors and outperformed check varieties in almost all parameters assessed. To improve crop establishment and increase agricultural yields, breeding and crop improvement programs should focus on genotypes that can withstand both stresses.
When water and nutrients are not limiting, and pests and disease are effectively controlled, crop growth and yield is determined by weather conditions such as temperature and solar radiation. To determine the relationship between weather indices and crop yield, multiple wheat varieties were sown at two sowing times, for five sowing seasons and at two locations. The following weather indices around the 50% anthesis stage were recorded and analysed: mean temperature (Tmean), maximum temperature (Tmax), number of days with temperature >30°C (T30), vapour pressure deficit (VPD), photosynthetically active radiation, photothermal quotient (PQ) and photothermal quotient corrected for vapour pressure deficit (PQvpd). Overall, for every 1°C rise in temperature, crop yield decreased by 370 kg/ha. For every 1°C rise in temperature, normal sowing window yield decreased by 360 kg/ha while late-sown wheat yield decreased by 640 kg/ha. Correlation analysis was conducted between the weather indices and grain number, grain yield and grain protein. There was a significant positive correlation between PQ and PQvpd and grain number and grain yield. There was a significant negative correlation between Tmean, Tmax, T30 and VPD and grain number and grain yield. Grain protein content showed a positive correlation with maximum air temperature and a negative correlation with the weather indices PQ and PQvpd. PQ and PQvpd can be used to predict grain number and grain yield potential. This study showed that grain number and grain yield predicted using PQ and PQvpd are more reliable than using temperature and radiation individually.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
The African buffalo is one of the best-researched of all ungulate species even though it must give way to some North American deer species, an elephant-seal species and the red deer. The African buffalo had some monographs dedicated to it, but much new research has been carried out on the species since that time, which is brought up to date in the present volume. This allowed us to make an inventory of what we do not know yet about this important species. For that purpose, we made an inventory of research topics, or questions tabulated under three different knowledge domains, (i) ‘known unknowns’, (ii) ‘unknown unknowns’ and (iii) ‘unknown knowns’. The ‘known unknowns’ we categorized as those research questions sitting as it were in the backs of the minds of the current suite of African buffalo specialist; our inventory yielded 37 research issues. The ‘unknown knowns’, we portrayed as evidence-based scientific knowledge on buffalo that a current generation of scientists appear to have forgotten. This proved difficult, but three topics were identified. Here we also draw attention to the fact that modern scientists appear to ignore francophone literature, which is rather unfortunate as West and Central Africa are to a large extent francophone. Not using this repository of information may lead to knowledge decay. Finally, we share thoughts on the ‘unknown unknowns’, which we described as ‘knowledge once we have it will upset our present thinking, perhaps about African buffalo, perhaps on ecology evolution, or on aspects of the veterinary sciences’. Under this category, we touched on 15 issues, but perhaps our imagination was too limited. So, we share in total some 60-odd questions and ideas, and we hope that at least some of these questions or ideas will kindle someone’s imagination and drive to bring knowledge on this great species further.
As global warming intensifies, residents of temperate regions will also face heat waves in the near future. Food habits are one component in addressing the global challenge of climate change. However, water, the most important food for humans, has not been adequately addressed.
Design:
For this commentary, on the one hand, publications on the increasing heat stress of children were consulted. On the other hand, publications on the special demands of children’s temperature regulation in hot environments on fluid balance were analysed.
Setting:
The situation of young children in care facilities on days with heat stress is presented as a scenario. In this way, the effects of climatic changes on fluid balance can be estimated and measures to reduce heat stress and stabilise the fluid balance of children can be developed.
Participants:
For this analysis, first, infants will be considered in order to identify their specific fluid needs. Second, the possibilities for caregivers to improve fluid intake and train appropriate drinking habits already in infancy will be highlighted.
Results:
Climate change should be included in recommendations on hydration for children. The need to adapt drinking habits requires educational approaches to weather and water – starting in early childhood care.
Conclusions:
In the face of rapid climate change, countries must act now by protecting, preparing and prioritising the high-risk group of children. Particular focus should be placed on supporting adequate hydration.
The aim of this study was to evaluate the effect of the sprinkler cycle and flow rate on physiological, behavioural, and productive responses in dairy buffaloes. Nine Nili Ravi lactating buffaloes were subjected to three sprinkler cycles and two flow rates using a double replicated 3 × 3 Latin square design. The flow rates were 1.25 and 2 l/min, and the sprinkler cycles (minutes water on/off, number of cycles/h) were: 3/3, 10 cycles; 3/6, 7 cycles and 3/9, 5 cycles. The showering was applied from 0800 till 1630 h daily. In the first square of 21 d, each of the three sprinkler cycles was applied using a 1.25 l/min flow rate for 7 d per cycle. In the later square, the same treatments (sprinkler cycles) were applied using the 2 l/min flow rate. The average temperature humidity index during the study period was 85.7 ± 3.8 (Mean ± sd). The result showed that the 3/3 treatment group had lower body temperature and respiration rate than the other groups. The buffaloes in the 3/3 group produced 0.5 and 0.7 kg more milk with 1.4 and 2.4% more fat than the 3/6 and the 3/9 treatment groups, respectively. Similarly, the 2 l/min flow rate had a lower core body temperate and respiration rate and higher milk yield than the 1.25 l/min group. The 3/3 showering cycle with a 2 l/min flow rate appeared effective in improving physiological responses and milk yield in dairy buffaloes.
The sheep farming has economic and sociocultural importance in semi-arid regions worldwide. Of the total of 1.2 billion sheep in the world, 0.4 are found in semi-arid regions. In this review, we have discussed the main risk factors for neonatal lamb mortality and its association with the prevailing environmental conditions of tropical semi-arid regions. Over the last decades, the average mortality rate of newborn lambs remained relatively constant (~15%) around the world. This rate is reported to be higher (Up to 30%) in small-scale sheep farming systems from developing countries. Overall, the main risk factors of neonatal mortality include low birth weight, dystocia, adverse weather conditions, inadequate milk, or colostrum supply, competition between siblings in multiple births, and poor expression of maternal behaviour. In tropical semi-arid regions, recent findings revealed that newborn lambs from hair coat sheep breeds are less vigorous to perform the first suckling when even exposed to moderate cold conditions (18–20°C). On the other hand, the high radiant heat load in these areas can also challenge the thermoregulation of ewes and newborn lambs, especially if they are kept in areas without protection against direct short-wave solar radiation. Under such circumstances, newborn lambs were reported to be hyperthermic. The heat stress as risk factor for neonatal lamb mortality is a topic that deserves more investigation, particularly in tropical semi-arid areas, where is expected to be drier and hotter as consequence of rapid advances in climate change.
Most research into the impacts of climate change concentrates on what would happen at low degrees of change. We know a great deal about best-case scenarios. Thanks to wilful ignorance among policymakers, and the cultural preferences of scientists, worst-case scenarios are much less considered. We know the least about what matters most.
Humanity’s situation with climate change is sometimes compared to that of a frog in a slowly boiling pot of water. Most of our climate science takes the form of prediction: telling the frog that in five minutes’ time he will be a little bit warmer. We need more risk assessment: telling the frog that the worst that could happen is he could boil to death, and that this is becoming increasingly likely over time. This approach can give a much clearer picture of the risks of climate change to human health, food security, and coastal cities.
The effects on rabbits of four potential transport-related stressors (heat [HS], cold [CS], noise [NS] and mixing with unfamiliar animals [MS]) on certain physiological and meat quality parameters were studied. These are factors which may act to reduce the welfare of rabbits during their transport to the slaughterhouse. The rabbits were exposed to each potential stressor for four and a half hours prior to slaughter. HS groups showed the highest plasma concentrations of cortisol, lactate and glucose and greater packed cell volume (PCV) and osmolarity than the control group, and the meat exhibited a low initial pH as a direct consequence of lactic acid accumulation. The rabbits exposed to cold (CS) and noise (NS) showed physiological responses to the potential stressor, although to a lesser degree than rabbits exposed to heat. Cold stressed rabbits showed increased levels of creatine kinase (CK) and a higher PCV as well as decreased muscle glycogen concentration compared to the control. Rabbits exposed to noise showed muscular damage as demonstrated by increased levels of CK and lactate dehydrogenase (LDH) activity in the blood and a high final pH in meat. Mixing unfamiliar rabbits (MS) lead to higher CK activity, lower lactate and glucose concentration and the meat pH was slightly higher than the control group. In conclusion, these results suggested that rabbits exposed to heat were the most affected out of all three groups, although cold, noise and mixing with unfamiliar rabbits also had a detrimental effect on physiological and meat quality parameters.
Climate change is most directly felt by people who cannot escape its impacts, including workers whose source of livelihood may put them directly at risk from high heat. Research on these impacts for Australian workers, especially the sociopolitical determinants of effective workplace heat management, remains limited. This article presents findings from a national research project that investigated these issues in collaboration with the Australia-based United Workers Union. It reports on the experiences of members exposed to high heat, explores how they address heat stress and how they relate this to climate change. The article expands understanding of the impacts of workplace heat, especially for indoor workers and those in lower paid jobs, through a focus on how workers articulate their experiences and understand and exercise their agency at work.
Heat stress reduction in hutch-reared dairy calves is overlooked on most dairy farms. We hypothesised that during summer, the microclimate within hutches is directly affected by compass direction as a result of differences in exposure to solar radiation. On a bright, mid-August day a number of behavioural and physiological heat stress response measures (respiratory rate, body posture, being in the shade or sun) were recorded in 20-min intervals from 0720-1900h on calves housed in hutches with entrances facing all four points of the compass. In conjunction with this, dry bulb (ambient) and black globe temperatures, and wind speed were recorded both inside the plastic hutches and at one sunny site at the exterior. Data were compared in terms of distinct periods of the day (0720-1100, 1120-1500, 1520-1900h). Dry bulb temperatures were higher inside hutches compared to outside while for black globe temperatures the opposite was true. Daily average temperatures and respiratory rates did not differ between hutches facing different compass points. In the morning and afternoon, hutch temperature and calf respiratory rate differed relative to compass point. Calves in east- and north-facing hutches were seen more in the shade than those in south- and west-facing ones. Our conclusion was that in a continental region having hutch entrances face towards the east or north confers some advantages in mitigating severe solar heat load in summer.
Low-latitude penguins naturally breed in burrows dug in guano. This affords them a buffered environment that remains cool and humid, reducing the risk of hyperthermia while on land. As a conservation strategy, several versions of artificial housing units have been trialled at various breeding sites of African Penguins (Spheniscus demersus) around South Africa, where former guano exploitation forced many penguins to breed in exposed surface nests. While some units yielded a positive effect on breeding success by providing protection against predation, none of them have effectively mitigated the risk of heat stress in penguins or their eggs. Here, we investigated the microclimate of a recent double-layered design of ceramic artificial nests and compared that to natural burrows, exposed surface nests, and commonly used cement pipe nests, in austral summer 2021 on Bird Island, South Africa. We also recorded penguin behaviour during the hottest period at each of these nest types using remote camera traps to determine the onset of heat stress (panting). Double-layered ceramic nests out-performed all other nest types, including natural burrows, by remaining cooler throughout the day, with temperatures never exceeding 36.7°C. By contrast, all other nest types had multiple episodes where temperatures exceeded 40°C. Double-layered ceramic nests also maintained constant levels of high humidity (relative humidity [RH] >70%) throughout our study, whereas low humidity levels were observed in surface nests (RH ≈ 60%) and cement nests (RH <50%) during midday heat. We observed penguins panting at temperatures of 25°C in nest boxes, and at 22°C in exposed surface nests. This suggests that heat stress in African Penguins may occur much sooner than anticipated and that they are particularly vulnerable to hyperthermia as climate change-related global warming progresses. Fortunately, we are encouraged by the capacity of double-layered ceramic nest boxes to buffer environmental extremes and maintain suitable breeding conditions.
Heat shock protein 90 (Hsp90) is critical for cell homeostasis but its role on bovine oocyte maturation is not well known. We investigated the importance of Hsp90 for competence of bovine oocyte using 17-(allylamino)-17-demethoxygeldanamycin (17AAG), an inhibitor of Hsp90, during in vitro maturation (IVM). Three experiments evaluated the effect of 17AAG on developmental competence of oocytes matured in vitro under thermoneutral (38.5ºC) or heat shock (HS; 41.5ºC) temperatures. The first experiment found that the blastocyst rates were lower (P < 0.05) with 2 µM 17AAG compared with the untreated control (0 µM). The abundance of HSF1 transcripts was higher in oocytes matured with 2 µM than with 0 and 1 µM 17AAG, whereas the abundance of HSP90AA1 and HSPA1A transcripts was lower (P < 0.05) with 1 and 2 µM than with 0 µM. The second experiment found that 2 µM 17AAG for 12 or 24 h during IVM decreased (P < 0.05) the blastocysts rates. In the third experiment, the association of 2 μM 17AAG with HS for 12 h during IVM resulted in lower (P < 0.05) blastocysts rates than 17AAG, HS or untreated control. In conclusion, inhibition of Hsp90 during in vitro maturation compromises further embryo development; the association of Hsp90 inhibition with HS aggravates the deleterious effect of both on oocyte developmental competence.
In growing pigs, reduced growth during heat stress (HS) is mainly related to decreased feed intake. The study aimed to determine whether the reported positive effects of live yeast (LY) supplementation in HS pigs were due to a modified feeding behaviour or energy metabolism, and if these can be replicated by imposing an increased meal frequency. The effect of LY supplementation (0 (NS) v. 100 (LY) g/ton of feed), and of feeding window (FW) (unlimited or Unli, 2FW of 1 h each and 8FW of 15 min each) were measured in entire male finishing pigs (n 36). Ambient temperature was at 22°C during the thermoneutral (TN) period (5 d) and at 28°C during the HS period (5 d). Heat exposure decreased DM intake (DMI) and retained energy (RE) (–627 and −460 kJ·kg BW–0·60 · d–1, respectively; P < 0·01). During HS, LY supplementation in Unli pigs decreased inter-meal intervals (P = 0·02) attenuating HS effect on DMI which tended to improve RE (P = 0·09). NS – 8FW had higher DMI and RE than NS – 2FW (P < 0·05) but protein deposition (PD) were similar. Supplemented pigs had higher PD during HS regardless of FW (+18 g · d–1; P = 0·03). Comparing the 2FW groups, improved heat tolerance of LY-supplemented pigs were due to improved insulin sensitivity (P < 0·05) and latent heat loss capacity after a meal (P < 0·05) allowing them to increase their DMI (via an increased number of meals) and thus their energy efficiency. Imposing an increased meal frequency improved DMI in HS pigs but did not replicate positive effects of LY on PD.
Severe heat exposure causes mitochondrial fragmentation and dysfunction, which contribute to the pathogenesis of heat-related illness. l-Citrulline is a naturally occurring amino acid and has been suggested to influence heat shock responses. This study aimed to test whether l-citrulline supplementation would preserve mitochondrial integrity and attenuate heat-induced skeletal muscle injury and elucidate the underlying mechanisms. At 37°C, l-citrulline (2 mM) increased mitochondrial elongation in mouse C2C12 myoblasts, a process associated with a reduction in mitochondrial fission protein Drp1 levels. Mechanistic studies revealed that l-citrulline increased cellular nitric oxide (NO) levels, but not S-nitrosylation of Drp1. l-Citrulline caused a decrease in phosphorylation of Drp1 at Ser 616 and an increase in phosphorylation of Drp1 at Ser 637, which resulted in a reduced mitochondrial localisation of Drp1. L-NAME, a non-selective NO synthase inhibitor, abolished the increase in l-citrulline-induced NO levels and inhibited Drp1 phosphorylation changes and mitochondrial elongation, which indicates the involvement of a NO-dependent pathway. Under 43°C heat stress conditions, l-citrulline prevented translocation of Drp1 to mitochondria, mitochondrial fragmentation and decreased membrane potential. Finally, l-citrulline pretreatment inhibited heat-induced reactive oxygen species overproduction, caspase 3/7 activation, apoptotic cell death and improved cell viability. NO inhibitor l-NAME abolished all the above protective effects of l-citrulline under heat stress. Our results suggest that l-citrulline prevents heat-induced mitochondrial dysfunction and cell injury through NO-mediated Drp1 inhibition in C2C12 myoblasts. l-Citrulline may be an effective treatment for heat-related illnesses and other mitochondrial diseases.