The present work studies the design of a high impedance surface (HIS)-based bowtie antenna in the framework of characteristic mode analysis (CMA) and proposes the method of higher order mode suppression. A triangular-elliptical bowtie antenna operating in the frequency range of 1.6–6 GHz is designed. The radiating and higher order modes of the proposed antenna are identified using CMA, and an HIS structure is used to enhance the desired mode and to suppress the higher order mode in order to get high gain, good front-to-back ratio (FBR), and stable radiation characteristics. The final designed HIS-based bowtie antenna gives stable radiation patterns from 1.7 to 5.5 GHz with a maximum boresight gain of 10.5 dB. Also, gain from 6.5 to 12 dB and FBR from 8 to 18 dB are obtained in the operating bandwidth. The proposed antenna features the advantages of low profile, wideband and high boresight gain making it suitable for ground-penetrating radar applications.