Let Msw denote the least iterable inner model with a strong cardinal above a Woodin cardinal. By [11], Msw has a fully iterable core model, ${K^{{M_{{\rm{sw}}}}}}$, and Msw is thus the least iterable extender model which has an iterable core model with a Woodin cardinal. In V, ${K^{{M_{{\rm{sw}}}}}}$ is an iterate of Msw via its iteration strategy Σ.
We here show that Msw has a bedrock which arises from ${K^{{M_{{\rm{sw}}}}}}$ by telling ${K^{{M_{{\rm{sw}}}}}}$ a specific fragment ${\rm{\bar{\Sigma }}}$ of its own iteration strategy, which in turn is a tail of Σ. Hence Msw is a generic extension of $L[{K^{{M_{{\rm{sw}}}}}},{\rm{\bar{\Sigma }}}]$, but the latter model is not a generic extension of any inner model properly contained in it.
These results generalize to models of the form Ms (x) for a cone of reals x, where Ms (x) denotes the least iterable inner model with a strong cardinal containing x. In particular, the least iterable inner model with a strong cardinal above two (or seven, or boundedly many) Woodin cardinals has a 2-small core model K with a Woodin cardinal and its bedrock is again of the form $L[K,{\rm{\bar{\Sigma }}}]$.