We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $U$ be a smooth affine curve over a number field $K$ with a compactification $X$ and let ${\mathbb {L}}$ be a rank $2$, geometrically irreducible lisse $\overline {{\mathbb {Q}}}_\ell$-sheaf on $U$ with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field $E\subset \overline {\mathbb {Q}}_{\ell }$, and has bad, infinite reduction at some closed point $x$ of $X\setminus U$. We show that ${\mathbb {L}}$ occurs as a summand of the cohomology of a family of abelian varieties over $U$. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when $E=\mathbb {Q}$, then ${\mathbb {L}}$ is isomorphic to the cohomology of an elliptic curve $E_U\rightarrow U$.
La formule des traces relative de Jacquet–Rallis (pour les groupes unitaires ou les groupes linéaires généraux) est une identité entre des périodes des représentations automorphes et des distributions géométriques. Selon Jacquet et Rallis, une comparaison de ces deux formules des traces relatives devrait aboutir à une démonstration des conjectures de Gan–Gross–Prasad et Ichino–Ikeda pour les groupes unitaires. Les termes géométriques des groupes unitaires ou des groupes linéaires sont indexés par les points rationnels d'un espace quotient commun. Nous établissons que ces termes géométriques peuvent être vus comme des fonctionnelles sur des espaces d'intégrales orbitales semi-simples régulières locales. En outre, nous montrons que point par point ces distributions sont en fait égales, via l'identification des espaces d'intégrales orbitales locales donnée par le transfert et le lemme fondamental (essentiellement connus dans cette situation). Cela donne leur comparaison et cela clôt la partie géométrique du programme de Jacquet–Rallis. Notre résultat principal est donc un analogue de la stabilisation de la partie géométrique de la formule des traces due à Langlands, Kottwitz et Arthur.
We prove duality isomorphisms of certain representations of ${\mathcal{W}}$-algebras which play an essential role in the quantum geometric Langlands program and some related results.
Inspired by a construction by Bump, Friedberg, and Ginzburg of a two-variable integral representation on $\text{GS}{{\text{p}}_{4}}$ for the product of the standard and spin $L$-functions, we give two similar multivariate integral representations. The first is a three-variable Rankin-Selberg integral for cusp forms on $\text{PG}{{\text{L}}_{4}}$ representing the product of the $L$-functions attached to the three fundamental representations of the Langlands $L$-group $\text{S}{{\text{L}}_{\text{4}}}\left( \text{C} \right)$. The second integral, which is closely related, is a two-variable Rankin-Selberg integral for cusp forms on $\text{PGU}\left( 2,\,2 \right)$ representing the product of the degree $8$ standard $L$-function and the degree $6$ exterior square $L$-function.
Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius elements, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.
We analyse the $\text{mod}~p$ étale cohomology of the Lubin–Tate tower both with compact support and without support. We prove that there are no supersingular representations in the $H_{c}^{1}$ of the Lubin–Tate tower. On the other hand, we show that in $H^{1}$ of the Lubin–Tate tower appears the $\text{mod}~p$ local Langlands correspondence and the $\text{mod}~p$ local Jacquet–Langlands correspondence, which we define in the text. We discuss the local-global compatibility part of the Buzzard–Diamond–Jarvis conjecture which appears naturally in this context.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.