We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter presents how scientists currently use the increasing number of individuals who live to an age above 90 years (i.e. long-lived individuals) to investigate biological determinants of longevity. It will provide an overview of the most extensive studies of exceptionally long-lived individuals and long-living families that have been established since the early 1970s. The focus of the chapter will be on the metabolic phenotypes and the genetic determinants that characterize them. It will discuss the delayed occurrence of age-related disease in long-lived individuals and their offspring as well as their favourable immune-metabolic profile, that is, improved glycaemic control, lipid and thyroid metabolism and immunity. Moreover, it will provide an overview of studies focused on unravelling the genetic component of longevity, which is assumed to be partly responsible for the observed immune-metabolic profile. The findings from these studies indicate that longevity is most likely determined by many different rare protective genetic variants that still need to be identified, for example using whole genome/exome sequencing approaches. Last, but not least, the chapter will discuss some of the implications of the presented findings for medical research on ageing and age-related diseases.
Emerging evidence has shown a strong correlation between serum triacylglycerol (TAG) levels, the inflammatory response, and Parkinson’s disease (PD) onset. However, the causal relationship between TAG levels and PD has not been well-established. We aimed to investigate the relationship between serum TAG levels and risk of PD and explore the potential mediating role of circulating immune cells and inflammatory proteins. We utilised genotype data from the GeneRISK cohort, and summary data from genome wide association studies investigating PD, circulating immune cells, inflammatory proteins, and plasma lipidomes. Using Mendelian randomization (MR) and multivariate MR (MVMR) analysis, we further adjusted for phosphatidylcholine (17:0_18:1) and triacylglycerol (58:7). Our results suggested a robust causal link between higher serum TAG (51:4) levels and a decreased risk of PD, with one standard deviation genetically instrumented higher serum TAG (51:4) level leading to a 21 percent [95% CI, 0.66 – 0.96] reduction in the risk of PD (p = 0.015). Additionally, the results of the mediation analysis suggested a possible role for mediation through circulating immune cells (including IgD-CD38-B cells and resting CD4 regulatory T cells), but not circulating inflammatory proteins, in the causal relationship between the plasma lipidomes and PD. Our study confirms a causal relationship between higher serum TAG (51:4) levels and a lower risk of PD and clarifies a possible role for mediation through circulating immune cells, but not inflammatory proteins. These findings indicate that serum triacylglycerol (51:4) regulates immunity to effectively lower the risk of PD.
In the UK, populations of Black African and Caribbean (BAC) ethnicity suffer higher rates of cardiometabolic disease than White Europeans (WE). Obesity, leading to increased visceral adipose tissue (VAT) and intrahepatic lipid (IHL), has long been associated with cardiometabolic risk, driving insulin resistance and defective fatty acid/lipoprotein metabolism. These defects are compounded by a state of chronic low-grade inflammation, driven by dysfunctional adipose tissue. Emerging evidence has highlighted associations between central complement system components and adipose tissue, fatty acid metabolism and inflammation; it may therefore sit at the intersection of various cardiometabolic disease risk factors. However, increasing evidence suggests an ethnic divergence in pathophysiology, whereby current theories fail to explain the high rates of cardiometabolic disease in BAC populations. Lower fasting and postprandial TAG has been reported in BAC, alongside lower VAT and IHL deposition, which are paradoxical to the high rates of cardiometabolic disease exhibited by this ethnic group. Furthermore, BAC have been shown to exhibit a more anti-inflammatory profile, with lower TNF-α and greater IL-10. In contrast, recent evidence has revealed greater complement activation in BAC compared to WE, suggesting its dysregulation may play a greater role in the high rates of cardiometabolic disease experienced by this population. This review outlines the current theories of how obesity is proposed to drive cardiometabolic disease, before discussing evidence for ethnic differences in disease pathophysiology between BAC and WE populations.
Traditionally, in vitro oocyte and embryo culture progresses through a series of varying culture medium. To investigate simplifying the in vitro production of bovine cumulus–oocyte complexes (COCs), this study used synthetic oviductal fluid (SOF) supplemented with conjugated linoleic acid (CLA). Special interest was placed on gene expression linked to lipid metabolism and oocyte maturation. COCs were matured in different media: Medium 199 (M199 group), M199 with 100 μM CLA (M199 + CLA group), SOF (SOF group), and SOF with 100 μM CLA (SOF + CLA group). COCs matured with SOF showed a higher relative abundance of mRNA of quality indicators gremlin 1 (GREM1) and prostaglandin-endoperoxide synthase 2 (PTGS2) in oocytes, and GREM1 in cumulus cells compared with in the M199 group. SOF medium COCs had a higher relative abundance of fatty acid desaturase 2 (FADS2) compared with the M199 group, which is essential for lipid metabolism in oocytes. Furthermore, the abundance of stearoyl-coenzyme A desaturase 1 (SCD1) in oocytes matured with SOF was not influenced by the addition of CLA, whereas the relative abundance of SCD1 was reduced in M199 medium with CLA. We concluded that maturation in SOF medium results in a greater abundance of genes linked to quality and lipidic metabolism in oocytes, regardless of the addition of CLA.
This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
Zn is an important trace element involved in various biochemical processes in aquatic species. An 8-week rearing trial was thus conducted to investigate the effects of Zn on juvenile largemouth bass (Micropterus salmoides) by feeding seven diets, respectively, supplemented with no Zn (Con), 60 and 120 mg/kg inorganic Zn (Sul60 and Sul120), and 30, 60, 90 and 120 mg/kg organic Zn (Bio30, Bio60, Bio90 and Bio120). Sul120 and Bio120 groups showed significantly higher weight gain and specific growth rate than Con group, with Bio60 group obtaining the lowest viscerosomatic index and hepatosomatic index. 60 or 90 mg/kg organic Zn significantly facilitated whole body Zn retention. Up-regulation of hepatic superoxide dismutase, glutathione peroxidase and catalase activities and decline of malondialdehyde contents indicated augmented antioxidant capacities by organic Zn. Zn treatment also lowered plasma aminotransferase levels while promoting acid phosphatase activity and hepatic transcription levels of alp1, acp1 and lyz-c than deprivation of Zn. The alterations in whole body and liver crude lipid and plasma TAG contents illustrated the regulatory effect of Zn on lipid metabolism, which could be possibly attributed to the changes in hepatic expressions of acc1, pparγ, atgl and cpt1. These findings demonstrated the capabilities of Zn in potentiating growth and morphological performance, antioxidant capacity, immunity as well as regulating lipid metabolism in M. salmoides. Organic Zn could perform comparable effects at same or lower supplementation levels than inorganic Zn, suggesting its higher efficiency. 60 mg/kg supplementation of organic Zn could effectively cover the requirements of M. salmoides.
Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterisation of the lipid species in placentas from pregnancies complicated with GDM using high-resolution MS lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly lower abundance of total ceramides. Additionally, very long-chain ceramides and sphingomyelins with twenty-four carbons were lower, and glucosylceramides with sixteen carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly lower contents of medium and long-chain fatty-acyl carnitine species. The lower contents of sphingolipids may affect the secretory function of the placenta, and lower contents of long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.
The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.
A short-term 2-week (2w) and long-term 8-week (8w) feeding trial was conducted to investigate the effects of low-starch (LS) and high-starch (HS) diets on the growth performance, metabolism and liver health of largemouth bass (Micropterus salmoides). Two isonitrogenous and isolipidic diets containing two levels of starch (LS, 9·06 %; HS, 13·56 %) were fed to largemouth bass. The results indicated that HS diet had no significant effects on specific growth rate during 2w, whereas significantly lowered specific growth rate at 8w. HS diet significantly increased hepatic glycolysis and gluconeogenesis at postprandial 24 h in 2w. The hepatosomatic index, plasma alkaline phosphatase, total bile acid (TBA) levels, and hepatic glycogen, TAG, total cholesterol, TBA, and NEFA contents were significantly increased in the HS group at 2w. Moreover, HS diet up-regulated fatty acid and TAG synthesis-related genes and down-regulated TAG hydrolysis and β-oxidation-related genes. Therefore, the glucolipid metabolism disorders resulted in metabolic liver disease induced by HS diet at 2w. However, the up-regulation of bile acid synthesis, inflammation and energy metabolism-related genes in 2w indicated that largemouth bass was still in a state of ‘self-repair’ response. Interestingly, all the metabolic parameters were returned to homoeostasis, with up-regulation of intestinal glucose uptake and transport-related genes, even hepatic histopathological analysis showed no obvious abnormality in the HS group in 8w. In conclusion, HS feed induced short-term acute metabolic disorder, but long-term metabolic adaptation to HS diet was related to repairing metabolism disorders via improving inflammatory responses, bile acid synthesis and energy metabolism. These results strongly indicated that the largemouth bass owned certain adaptability to HS diet.
Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) β-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial β-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal β-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating β-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA β-oxidation capability and suppressing the ER stress pathway in fish.
An 8-week feeding trial was conducted to investigate the effects of dietary vitamin D3 supplementation on the growth performance, tissue Ca and P concentrations, antioxidant capacity, immune response and lipid metabolism in Litopenaeus vannamei larvae. A total of 720 shrimp (initial weight 0·50 ± 0·01 g) were randomly distributed into six treatments, each of which had three duplicates of forty shrimp per duplicate. Six isonitrogenous and isolipidic diets were formulated to contain graded vitamin D3 (0·18, 0·23, 0·27, 0·48, 0·57 and 0·98 mg/kg of vitamin D3, measured) supplementation levels. The results revealed that L. vannamei fed diet containing 0·48 mg/kg of vitamin D3 achieved the best growth performance. Compared with the control group, supplementing 0·48 mg/kg of vitamin D3 significantly increased (P < 0·05) the activities of catalase, total antioxidative capacity, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. Expression levels of antioxidant and immune-related genes were synchronously increased (P < 0·05). Carapace P and Ca concentrations were increased (P < 0·05) with the increased vitamin D3 supplementation levels. Further analysis of lipid metabolism-related genes expression showed that shrimp fed 0·48 mg of vitamin D3 per kg diet showed the highest value in the expression of lipid synthesis-related genes, while shrimp fed 0·98 mg of vitamin D3 per kg diet showed the highest value in the expression of lipolysis-related genes. In conclusion, the results of present study indicated that dietary supplementation of 0·48 mg/kg of vitamin D3 could increase Ca and P concentrations, improve antioxidant capacity and immune response, and influence lipid metabolism in L. vannamei.
The present study investigated the effect of black soldier fly (Hermetia illucens) larvae meal (BSF) on haemolymph biochemical indicators, muscle metabolites as well as the lipid and glucose metabolism of Pacific white shrimp Litopenaeus vannamei. Four diets were formulated in which the control diet contained 25 % of fishmeal (FM) and 10 % (BSF10), 20 % (BSF20), and 30 % (BSF30) of FM protein were replaced with BSF. Four hundred and eighty shrimp (0·88 ± 0·00 g) were distributed to four groups of three replicates and fed for 7 weeks. Results showed that growth performance of shrimp fed BSF30 significantly decreased compared with those fed FM, but there was no significant difference in survival among groups. The whole shrimp crude lipid content, haemolymph TAG and total cholesterol were decreased with the increasing BSF inclusion. The results of metabolomics showed that the metabolite patterns of shrimp fed different diets were altered, with significant changes in metabolites related to lipid metabolism, glucose metabolism as well as TCA cycle. The mRNA expressions of hk, pfk, pk, pepck, ampk, mcd, cpt-1 and scd1 in hepatopancreas were downregulated in shrimp fed BSF30, but mRNA expression of acc1 was upregulated. Unlike BSF30, the mRNA expressions of fas, cpt-1, fbp and 6pgd in hepatopancreas were upregulated in shrimp fed BSF20. This study indicates that BSF20 diet promoted lipid synthesis and lipolysis, while BSF30 diet weakened β-oxidation and glycolysis as well as affected the unsaturated fatty acids synthesis, which may affect the growth performance and body composition of shrimp.
Lipid metabolism has been an area of increased interest in psychosis research, not only due to its link to metabolic comorbidities, but also due to its putative role in the pathophysiology of psychosis. Lipid disturbances are observed already in the period preceding the onset of psychosis. For example, we performed mass spectrometry based lipidomics in a cohort of individuals at clinical high risk for psychosis (the EU-GEI study) and found that the individuals who transitioned to psychosis within a 2-year follow-up period displayed decreased levels of ether phospholipids. This finding may be of direct (patho)physiological relevance, as ether phospholipids (particularly plasmalogens, a major subgroup of ether phospholipids) are highly enriched in the brain, are supplied to the brain by the liver, have many structural and functional roles, and may act as endogenous antioxidants. Accumulating evidence also suggests that lipid disturbances play a crucial role in the development of metabolic comorbidities associated with psychotic disorders. Our lipidomic studies have shown that psychotic patients who rapidly gain weight during follow-up have elevated triglycerides (TGs) with low double bond count and carbon number at baseline. These TGs are known to be associated with non-alcoholic fatty liver disease (NAFLD) and with increased risk of type 2 diabetes. In conclusion, although the mechanisms linking dysregulation of lipid metabolism with the pathophysiology of psychosis are currently poorly understood, findings by us and others suggest that metabolic abnormalities are evident in people who are vulnerable to psychosis, and to the associated metabolic comorbidities.
This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-β (CaMKKβ)/adenosine 5’-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKβ/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.
In present study, we explored the effects and the underlying mechanisms of phospholipase C (PLC) mediating glucose-induced changes in intestinal glucose transport and lipid metabolism by using U-73122 (a PLC inhibitor). We found that glucose incubation activated the PLC signal and U-73122 pre-incubation alleviated the glucose-induced increase in plcb2, plce1 and plcg1 mRNA expression. Meanwhile, U-73122 pre-treatment blunted the glucose-induced increase in sodium/glucose co-transporters 1/2 mRNA and protein expressions. U-73122 pre-treatment alleviated the glucose-induced increase in TAG content, BODIPY 493/503 fluorescence intensity, lipogenic enzymes (glucose 6-phospate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), malic enzyme and fatty acid synthase (FAS)) activity and the mRNA expressions of lipogenic genes and related transcription factors (6pgd, g6pd, fas, acca, srebp1 and carbohydrate response element-binding protein (chrebp)) in intestinal epithelial cells of yellow catfish. Further research found that U-73122 pre-incubation mitigated the glucose-induced increase in the ChREBP protein expression and the acetylation level of ChREBP in HEK293T cells. Taken together, these data demonstrated that the PLC played a major role in the glucose-induced changes of glucose transport and lipid metabolism and provide a new perspective for revealing the molecular mechanism of glucose-induced changes of intestinal glucose absorption, lipid deposition and metabolism.
A 10-week feeding trial was conducted to investigate the effect of dietary curcumin (CC) on growth antioxidant responses, fatty acid composition, and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet (HFD). Four diets (lipid level at 18 %) were formulated with different levels of curcumin (0, 0·02, 0·04 and 0·06 %). The best growth performance was found in the 0·04 % curcumin group, with the body and hepatic lipid levels lower than the control group (0 % CC). The content of TAG, total cholesterol and LDL-cholesterol was the least in the 0·06 % curcumin group. The lowest malondialdehyde and the highest superoxide dismutase, catalase and total antioxidant capacity were observed in the 0·04 % curcumin group. The 0·04 % curcumin group had higher expression of Δ6fad, elovl5 and elovl4 and showed higher hepatic n-6 and n-3 PUFA. Expression of ppara, cpt1, and aco was significantly increased, while expression of srebp1 and fas was dramatically decreased in curcumin groups compared with the control group. Overall, 0·04 % curcumin supplementation could mitigate the negative effects caused by HFD and promote growth via reducing hepatic lipid deposition, improving antioxidant activity and increasing PUFA of large yellow croaker. To conclude, abnormal hepatic lipid deposition was probably due to increased fatty acid oxidation and reduced de novo synthesis of fatty acids.
Previous nutritional studies have shown that insulin regulation is different between DT and A strains of gibel carp. As leptin plays a pivotal role in the effects of insulin, we hypothesised that leptin regulation of glucose and lipid metabolism would differ between the two strains. To test our hypothesis, recombinant human leptin was injected into two strains. The results showed that leptin activated the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (AKT), AMP-activated protein kinase–acetyl coenzyme A carboxylase and Janus kinase 2 (JAK2)–signal transducer and activator of transcription (STAT) signalling pathways in both strains. Hypoglycaemia induced by leptin might be due to higher glucose uptake by the liver and muscles together with enhanced glycolytic potential and reduced gluconeogenic potential. Decreased lipogenesis and up-regulated fatty acid oxidation were induced by leptin. In terms of genotype, the PI3K–AKT signalling pathway was more strongly activated by leptin in the muscle tissue of the A strain, as reflected by the heightened phosphorylation of AKT. Furthermore, glycogen content, glycolytic enzyme activity and gluconeogenic capability were higher in the A strain than the DT strain. Strain A had higher levels of fatty acid synthesis and lipolytic capacity in the liver than the DT strain, but the opposite was true in white muscle. Regarding leptin–genotype interactions, the DT strain displayed stronger regulation of glucose metabolism in the liver by leptin as compared with the A strain. Moreover, a more active JAK2–STAT signalling pathway accompanied by enhanced inhibition of fatty acid synthesis by leptin was observed in the DT strain. Overall, the regulation of glucose and lipid metabolism by leptin differed between the two strains, as expected.
An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.
The present study was conducted to determine the effects of dietary terrestrial oils (TO) supplemented with l-carnitine on growth performance, biochemical and antioxidant response, lipid metabolism and inflammation in large yellow croaker (Larimichthys crocea). Three iso-nitrogenous and iso-lipidic experimental diets were formulated with FO (fish oil, the control group), 75 % TO (75 % FO was substituted by the oil mixture with equal amounts of soyabean oil, linseed oil and pork lard) and 75 % TOC (75 % TO supplemented with 800 mg/kg l-carnitine). Compared with the control group, feed efficiency ratio and specific growth rate were significantly increased in fish fed diets with 75 % TO and 75 % TOC. Hepatic lipid content, serum TAG level, LDL-cholesterol level and the mRNA expression of pro-inflammatory genes (tnfα and ifnγ) were significantly increased in fish fed the diet with 75 % TO compared with the control group. However, the supplementation of 800 mg/kg l-carnitine in the 75 % TO diet repressed hepatic lipid content, serum LDL-cholesterol level and the mRNA expression of tnfα and ifnγ in fish compared with fish fed the diet with 75 % TO. Total antioxidant capacity, the activity of superoxide dismutase, the mRNA expression of cpt-I and the activity of CPT-I were significantly increased in fish fed the diet with 75 % TOC compared with 75 % TO. In conclusion, these results suggested that the supplementation of 800 mg/kg l-carnitine in the diet with TO mixture could increase growth, antioxidant capacity and fatty acid oxidation and decrease the expression of inflammatory genes in large yellow croaker.