We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces the class of autoregressive moving average models and discusses their properties in special cases and in general. We provide alternative methods for the estimation of unknown parameters and describe the properties of the estimators. We discuss key issues like hypothesis testing and model selection.
We first discuss a phenomenon called data mining. This can involve multiple tests on which variables or correlations are relevant. If used improperly, data mining may associate with scientific misconduct. Next, we discuss one way to arrive at a single final model, involving stepwise methods. We see that various stepwise methods lead to different final models. Next, we see that various configurations in test situations, here illustrated for testing for cointegration, lead to different outcomes. It may be possible to see which configurations make most sense and can be used for empirical analysis. However, we suggest that it is better to keep various models and somehow combine inferences. This is illustrated by an analysis of the losses in airline revenues in the United States owing to 9/11. We see that out of four different models, three estimate a similar loss, while the fourth model suggests only 10 percent of that figure. We argue that it is better to maintain various models, that is, models that stand various diagnostic tests, for inference and for forecasting, and to combine what can be learned from them.
Chapter 17 covers TWO-WAY INTERACTIONS IN MULTIPLE REGRESSION and includes the following specific topics, among others: Two-Way Interaction, First-Order Effects, Main Effects, Interaction Effects, Model Selection, AIC, BIC, and Probing Interactions.
Chapter 17 covers two-way interactions in multiple regression and includes the following specific topics, among others: two-way interaction, first-order effects, main effects, interaction effects, model selection, AIC, BIC, and probing interactions.
Modelling a neural system involves the selection of the mathematical form of the model’s components, such as neurons, synapses and ion channels, plus assigning values to the model’s parameters. This may involve matching to the known biology, fitting a suitable function to data or computational simplicity. Only a few parameter values may be available through existing experimental measurements or computational models. It will then be necessary to estimate parameters from experimental data or through optimisation of model output. Here we outline the many mathematical techniques available. We discuss how to specify suitable criteria against which a model can be optimised. For many models, ranges of parameter values may provide equally good outcomes against performance criteria. Exploring the parameter space can lead to valuable insights into how particular model components contribute to particular patterns of neuronal activity. It is important to establish the sensitivity of the model to particular parameter values.
We can easily find ourselves with lots of predictors. This situation has been common in ecology and environmental science but has spread to other biological disciplines as genomics, proteomics, metabolomics, etc., become widespread. Models can become very complex, and with many predictors, collinearity is more likely. Fitting the models is tricky, particularly if we’re looking for the “best” model, and the way we approach the task depends on how we’ll use the model results. This chapter describes different model selection approaches for multiple regression models and discusses ways of measuring the importance of specific predictors. It covers stepwise procedures, all subsets, information criteria, model averaging and validation, and introduces regression trees, including boosted trees.
In this chapter we introduce Bayesian inference and use it to extend the frequentist models of the previous chapters. To do this, we describe the concept of model priors, informative priors, uninformative priors, and conjugate prior-likelihood pairs . We then discuss Bayesian updating rules for using priors and likelihoods to obtain posteriors. Building upon priors and posteriors, we then describe more advanced concepts including predictive distributions, Bayes factors, expectation maximization to obtain maximum posterior estimators, and model selection. Finally, we present hierarchical Bayesian models, Markov blankets, and graphical representations. We conclude with a case study on change point detection.
The “No Miracle Argument” for scientific realism contends that the only plausible explanation for the predictive success of scientific theories is their truthlikeness, but doesn’t specify what ‘truthlikeness’ means. I argue that if we understand ‘truthlikeness’ in terms of Kullback-Leibler (KL) divergence, the resulting realist thesis (RKL) is a plausible explanation for science’s success. Still, RKL probably falls short of the realist’s ideal. I argue, however, that the strongest version of realism that the argument can plausibly establish is RKL. The realist needs another argument for establishing a stronger realist thesis.
Progress in the computational cognitive sciences depends critically on model evaluation. This chapter provides an accessible description of key considerations and methods important in model evaluation, with special emphasis on evaluation in the forms of validation, comparison, and selection. Major sub-topics include qualitative and quantitative validation, parameter estimation, cross-validation, goodness of fit, and model mimicry. The chapter includes definitions of an assortment of key concepts, relevant equations, and descriptions of best practices and important considerations in the use of these model evaluation methods. The chapter concludes with important high-level considerations regarding emerging directions and opportunities for continuing improvement in model evaluation.
The choice of a copula model from limited data is a hard but important task. Motivated by the visual patterns that different copula models produce in smoothed density heatmaps, we consider copula model selection as an image recognition problem. We extract image features from heatmaps using the pre-trained AlexNet and present workflows for model selection that combine image features with statistical information. We employ dimension reduction via Principal Component and Linear Discriminant Analyses and use a Support Vector Machine classifier. Simulation studies show that the use of image data improves the accuracy of the copula model selection task, particularly in scenarios where sample sizes and correlations are low. This finding indicates that transfer learning can support statistical procedures of model selection. We demonstrate application of the proposed approach to the joint modelling of weekly returns of the MSCI and RISX indices.
This chapter discusses the problem of selecting predictors in a linear regression model, which is a special case of model selection. One might think that the best model is the one with the most predictors. However, each predictor is associated with a parameter that must be estimated, and errors in the estimation add uncertainty to the final prediction. Thus, when deciding whether to include certain predictors or not, the associated gain in prediction skill should exceed the loss due to estimation error. Model selection is not easily addressed using a hypothesis testing framework because multiple testing is involved. Instead, the standard approach is to define a criterion for preferring one model over another. One criterion is to select the model that gives the best predictions of independent data. By independent data, we mean data that is generated independently of the sample that was used to inform the model building process. Criteria for identifying the model that gives the best predictions in independent data include Mallows’ Cp, Akaike’s Information Criterion, Bayesian Information Criterion, and cross-validated error.
Multivariate linear regression is a method for modeling linear relations between two random vectors, say X and Y. Common reasons for using multivariate regression include (1) to predicting Y given X, (2) to testing hypotheses about the relation between X and Y, and (3) to projecting Y onto prescribed time series or spatial patterns. Special cases of multivariate regression models include Linear Inverse Models (LIMs) and Vector Autoregressive Models. Multivariate regression also is fundamental to other statistical techniques, including canonical correlation analysis, discriminant analysis, and predictable component analysis. This chapter introduces multivariate linear regression and discusses estimation, measures of association, hypothesis testing, and model selection. In climate studies, model selection often involves selecting Y as well as X. For instance, Y may be a set of principal components that need to be chosen, which is not a standard selection problem. This chapter introduces a criterion for selecting X and Y simultaneously called Mutual Information Criterion (MIC).
The link between objective facts and politically relevant beliefs is an essential mechanism for democratic accountability. Yet the bulk of empirical work on this topic measures objective facts at whatever geographic units are readily available. We investigate the implications of these largely arbitrary choices for predicting individual-level opinions. We show that varying the geographic resolution—namely aggregating economic data to different geographic units—influences the strength of the relationship between economic evaluations and local economic conditions. Finding that unemployment claims are the best predictor of economic evaluations, especially when aggregated at the commuting zone or media market level, we underscore the importance of the modifiable areal unit problem. Our methods provide an example of how applied scholars might investigate the importance of geography in their own research going forward.
With rapid development in hardware storage, precision instrument manufacturing, and economic globalization etc., data in various forms have become ubiquitous in human life. This enormous amount of data can be a double-edged sword. While it provides the possibility of modeling the world with a higher fidelity and greater flexibility, improper modeling choices can lead to false discoveries, misleading conclusions, and poor predictions. Typical data-mining, machine-learning, and statistical-inference procedures learn from and make predictions on data by fitting parametric or non-parametric models. However, there exists no model that is universally suitable for all datasets and goals. Therefore, a crucial step in data analysis is to consider a set of postulated candidate models and learning methods (the model class) and select the most appropriate one. We provide integrated discussions on the fundamental limits of inference and prediction based on model-selection principles from modern data analysis. In particular, we introduce two recent advances of model-selection approaches, one concerning a new information criterion and the other concerning modeling procedure selection.
The generalized linear model (GLM) is a statistical model which has been widely used in actuarial practices, especially for insurance ratemaking. Due to the inherent longitudinality of property and casualty insurance claim datasets, there have been some trials of incorporating unobserved heterogeneity of each policyholder from the repeated observations. To achieve this goal, random effects models have been proposed, but theoretical discussions of the methods to test the presence of random effects in GLM framework are still scarce. In this article, the concept of Bregman divergence is explored, which has some good properties for statistical modeling and can be connected to diverse model selection diagnostics as in Goh and Dey [(2014) Journal of Multivariate Analysis, 124, 371–383]. We can apply model diagnostics derived from the Bregman divergence for testing robustness of a chosen prior by the modeler to possible misspecification of prior distribution both on the naive model, which assumes that random effects follow a point mass distribution as its prior distribution, and the proposed model, which assumes a continuous prior density of random effects. This approach provides insurance companies a concrete framework for testing the presence of nonconstant random effects in both claim frequency and severity and furthermore appropriate hierarchical model which can explain both observed and unobserved heterogeneity of the policyholders for insurance ratemaking. Both models are calibrated using a claim dataset from the Wisconsin Local Government Property Insurance Fund which includes both observed claim counts and amounts from a portfolio of policyholders.
This chapter focuses on model evaluation and selection in Hierarchical Modelling of Species Communities (HMSC). It starts by noting that even if there are automated procedures for model selection, the most important step is actually done by the ecologist when deciding what kind of models will be fitted. The chapter then discusses different ways of measuring model fit based on contrasting the model predictions with the observed data, as well as the use of information criteria as a method for evaluating model fit. The chapter first discusses general methods that can be used to compare models that differ either in their predictors or in their structure, e.g. models with different sets of environmental covariates, models with and without spatial random effects, models with and without traits or phylogenetic information or models that differ in their prior distributions. The chapter then presents specific methods for variable selection, aimed at comparing models that are structurally identical but differ in the included environmental covariates: variable selection by the spike and slab prior approach, and reduced rank regression that aims at combining predictors to reduce their dimensionality.
This paper develops the idea that nosological reform is ultimately a matter of finding homogeneous groups of patients that are maximally distinct from each other. The focus lies on the statistical properties of patients, so that the problem of classification coincides with the problem of the reference class from the philosophy of science. It is argued that specific statistical methods – model selection and causal modeling – can assist in finding good classifications. An important advantage of these statistical methods is that they do not favor any particular explanatory level or vocabulary. Whether or not we should include some patient characteristic in our classification scheme is an empirical issue, to be settled entirely by its contribution to the performance of the scheme in predictions and intervention decisions. For this reason the paper adopts a so-called a-reductionist perspective: we do not need a principled discussion on reductionism.
The objective of the current paper was to apply mixed models to adjust the growth curve of quail lines for meat and laying hens and present the rates of instantaneous, relative and absolute growth. A database was used with birth weight records up to the 148th day of female quail of the lines for meat and posture. The models evaluated were Brody, Von Bertalanffy, Logistic and Gompertz and the types of residues were constant, combined, proportional and exponential. The Gompertz model with the combined residue presented the best fit. Both strains present a high correlation between the parameters asymptotic weight (A) and average growth rate (k). The two strains presented a different growth profile. However, growth rates allow greater discernment of growth profiles. The meat line presented a higher growth rate (6.95 g/day) than the lineage for laying (3.65 g/day). The relative growth rate was higher for lineage for laying (0.15%) in relation to the lineage for meat (0.13%). The inflection point of both lines is on the first third of the growth curve (up to 15 days). All results suggest that changes in management or nutrition could optimize quail production.