To expand on recent work, we introduce collisional terms in the analysis of the warm ion–electron, two-fluid equations for a homogeneous plasma at rest. Consequently, the plasma is now described by six variables: the magnetisation, the ratio of masses over charges, the electron and ion sound speeds, the angle between the wave vector and the magnetic field and a new parameter describing the electron–ion collision frequency. This additional parameter does not introduce new wave modes compared with the collisionless case, but does result in complex mode frequencies. Both for the backward and forward propagating modes the imaginary components are negative and thus quantify collisional damping. We provide convenient (polynomial) expressions to quantify frequencies and damping rates in all short- and long-wavelength limits, including the cutoff and resonance limits, whilst the one-fluid magnetohydrodynamic limit is retained with the familiar undamped slow, Alfvén and fast waves. As collisions only introduce a damping, the previously introduced labelling of the wave modes S, A, F, M, O and X can be kept and assigned based on their long- and short-wavelength behaviour. The obtained damping at cutoff and resonance limits is parametrised with the collision frequency, and can be tailored to match known kinetic damping expressions. It is demonstrated that varying the angle can introduce crossings between the wave modes, as was already present in the ideal ion–electron case, but also a collision frequency exceeding a critical collision frequency can lead to crossings at angles where previously only avoided crossings were found.