We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01–1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (Pnonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.
During the first thousand days of life, fetus and infant’s nutrition depends on mother’s diet. Polyunsaturated fatty acids (PUFA) are important substrates in infant neurogenesis. We related erythrocyte membrane (EM) and breast milk fatty acids (FA) profile in lactating mothers with the EM FA profile in exclusively breastfed infants and evaluated maternal fat consumption. We conducted an observational, cross-sectional analytical study. During the 2016–2019 period, milk and blood samples from adult mothers 90 days post-partum and infant’s blood were analysed, and FA were determined by GC. A frequency of consumption survey of fatty acids precursor foods and sources was conducted. The sample included forty-five mother–infant EM and forty-five milk samples donated by the same mothers. A low percentage of DHA (0·14 (0·12–0·2)) was found in milk, consistent with mother’s low consumption of DHA-rich foods. A significant positive correlation between infant’s EM DHA percentage and milk DHA percentage (r = 0·39; P value 0·008), as well as between infant’s EM ω-3 fatty acids sum and milk DHA percentage (r = 0·39; P value 0·008), was found. When milk had a DHA percentage greater than or equal to 0·20 %, infants had a significant increase in DHA in their EM. Mother’s consumption of DHA precursors and sources was NS. The relation between the DHA percentage distribution found in maternal milk, and the DHA percentage distribution found in infant’s and mother’s EM was proven in this population. Dietary fatty acid intake is associated with the maternal milk lipid distribution and with mothers’ and infant’s EM fatty acids percentage.
Pregnant women who develop pre-eclampsia (PE) and/or intra-uterine growth restriction (IUGR) have reduced polyunsaturated fatty acid (PUFA) status compared to healthy pregnancy(1). It is unknown if pregnant women diagnosed with Gestational Diabetes Mellitus (GDM), and their offspring, also have compromised PUFA status. To determine if women with GDM, and their offspring, have altered PUFA status compared to healthy pregnancy. Pregnant women were recruited from Glasgow Scotland, and Brisbane, Australia from antenatal clinics for this cross sectional study. Third trimester maternal blood samples were collected after an overnight fast and cord blood samples were collected at delivery. Plasma fatty acids were analysed using gas chromatography from women with GDM (n = 37) and healthy pregnancies (n = 27) and their respective offspring (n = 31, from women with GDM, and n = 27 from healthy women). T-tests were used to determine significant differences between maternal with GDM and healthy pregnancy, as well as for their offspring and significance was set at p<0.05. Previously, erythrocyte fatty acids were analysed from women with PE (n = 21), IUGR (n = 13) and healthy pregnancies (n = 86)(1). All results were expressed as mol percent of total fatty acids. There were no differences in maternal plasma arachidonic acid (4.51 ± 1.23 vs. 4.72 ± 0.64, p = 0.39) and plasma EPA & DHA (2.33 ± 0.74 vs 2.69 ± 1.04, p = 0.14) in women with GDM and healthy pregnancies, respectively. There were no differences in fetal plasma arachidonic acid (11.58 ± 2.26 vs. 12.63 ± 1.69, p = 0.08) and plasma EPA & DHA (4.44 ± 1.17 vs. 4.44 ± 1.00, p = 0.89) in offspring from women with GDM and healthy pregnancies, respectively. Women with PE and IUGR had approximately 25% lower erythrocyte EPA & DHA and 35% lower erythrocyte arachidonic acid compared to healthy pregnant(1). Offspring from women with PE and IUGR had approximately 25% lower erythrocyte EPA & DHA and 22% lower erythrocyte arachidonic acid compared to healthy pregnancy(1).Women with PE and IUGR had lower PUFA status likely due to reduced PUFA synthesis(1) and offspring from women with PE and IUGR had reduced PUFA status likely due to ectopic fat in placenta tissue(2). Women with GDM do not have compromised PUFA status suggesting there is no reduced synthesis and transport of PUFA. Offspring from women with GDM do not have reduced PUFA status suggesting there is no problem with PUFA transport across the placenta, unlike offspring from women with PE and/or IUGR. Women with GDM, and their offspring, do not have compromised plasma PUFA status compared to healthy pregnancy.
Dietary oils and fats contain different fatty acid compositions that are associated with cardiometabolic disease risk. Despite their influence on disease outcomes, the types of dietary oils and fats predominately used in Australian households remain unknown. The aim of this study was to investigate the use of dietary oils and fats in cooking and food preparation in Australia. Adults living in Australia completed a cross-sectional online survey outlining their current household oil and fat use from July to December 2021. The survey was disseminated via social media platforms and included questions about the types of dietary oils and fats used for different cooking methods and the perceived motivators for choosing the main household oil. A total of 1248 participants responded to the survey. Participants were mostly female (91·6 %) aged between 25 and 44 years (56·7 %). The majority of participants (84·5 %) reported using some form of olive oil as their main source of oil for cooking and food preparation. Almost two-thirds of the sample (65·4 %) reported using extra virgin olive oil (EVOO), mainly in raw food preparation (71·5 %) or savoury baking and roasting (58 %). Fewer households reported using rice bran oil (4·6 %), canola oil (4·3 %) and vegetable oil (1·8 %). Almost half of all participants (49·6 %) identified perceived health benefits as the primary motivating factor for their main choice of oil, followed by sensory preference (46·7 %), versatility (10·2 %) and convenience (8·8 %). Australian adults frequently use olive oil, specifically EVOO, as the main oil for cooking and food preparation in the household.
Consumption of edible insects has been widely suggested as an environmentally sustainable substitute for meat to reduce greenhouse gas emissions. However, the novel research field for edible insects relies on the content of bioactive ingredients and on the ability to induce a functional effect in humans. The goal of this manuscript is to review the available body of evidence on the properties of edible insects in modulating oxidative and inflammatory stress, platelet aggregation, lipid and glucose metabolism and weight control. A search for literature investigating the functional role of edible insects was carried out in the PubMed database using specific keywords. A total of 55 studies, meeting inclusion criteria after screening, were divided on the basis of the experimental approach: in vitro studies, cellular models/ex vivo studies or in vivo studies. In the majority of the studies, insects demonstrated the ability to reduce oxidative stress, modulate antioxidant status, restore the impaired activity of antioxidant enzymes and reduce markers of oxidative damage. Edible insects displayed anti-inflammatory activity reducing cytokines and modulating specific transcription factors. Results from animal studies suggest that edible insects can modulate lipid and glucose metabolism. The limited number of studies focused on the assessment of anti-coagulation activity of edible insects makes it difficult to draw conclusions. More evidence from dietary intervention studies in humans is needed to support the promising evidence from in vitro and animal models about the functional role of edible insect consumption.
A paucity of evidence is available regarding the impact of diet's quality during pregnancy and lactation on the body composition of breast-feeding mothers. The purpose of the present study was to evaluate the association between maternal degree of adherence to the Mediterranean diet (MD) and body composition measures specifically those relating to body fat, in the lactation period. A cross-sectional study on healthy mothers of full-term babies has been conducted. At 30 ± 10 d after delivery, anthropometric measurements and body composition were assessed. A food frequency questionnaire was performed to compute the Italian Mediterranean Index (IMI) score as an index of adherence to the MD. Data related to pregnancy such as pre-pregnancy weight, gestational weight gain and morbidities were also collected. The 147 mothers included were categorised in IMI-1 (IMI score < 5; n 92) and IMI-2 (IMI score ≥ 5; n 55) groups. IMI-2 mothers showed higher daily energy, total carbohydrates, starch and fibre intakes than IMI-1. The dietary habits of IMI-2 mothers reflect the typical characteristics of MD: they consumed higher quantities of proteins and lipids of vegetal origin, higher amounts of monounsaturated and polyunsaturated fatty acids (PUFAs) and lower saturated to PUFAs ratio. The IMI-2 group showed lower absolute fat mass and fat mass index compared to IMI-1 [(20⋅2 ± 5⋅9) v. (22⋅9 ± 8⋅4) kg; P 0⋅036 and (7⋅5 ± 2⋅2) v. (8⋅5 ± 3⋅1) kg/m2; P 0⋅036, respectively], whereas body weight [(61⋅1 ± 8⋅0) v. (63⋅3 ± 9⋅2) kg] and body mass index [(22⋅4 ± 2⋅6) v. (23⋅3 ± 3⋅5) kg/m2] were similar. The degree of adherence to the MD during pregnancy and lactation is positively associated with lower maternal fat deposition in the breast-feeding period. The higher quality of dietary lipids, probably in synergy with the assumption of starchy carbohydrates and fibre, could influence maternal body fat.
Studies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder.
Methods
Fatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n = 15), bipolar disorder (n = 15), or major depressive disorder (n = 15) and compared with unaffected controls (n = 15).
Results
In contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis.
Conclusions
Patients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation.
Finishing late-maturing bulls on grass may alter the antioxidant/prooxidant balance leading to beef with higher susceptibility to lipid oxidation and a lower colour stability compared to bulls finished on cereal concentrates. In this context, lipid oxidation and colour stability of beef from late-maturing bulls finished on pasture, with or without concentrate supplements, or indoors on concentrate was assessed. Charolais or Limousin sired bulls (n = 48) were assigned to four production systems: (1) pasture only (P), (2) pasture plus 25% dietary DM intake as barley-based concentrate (PC25), (3) pasture plus 50% dietary DM intake as barley-based concentrate (PC50) or (4) a barley-based concentrate ration (C). Following slaughter and postmortem ageing, M. Longissimus thoracis et lumborum was subjected to simulated retail display (4°C, 1000 lux for 12 h out of 24 h) for 3, 7, 10 and 14 days in modified atmosphere packs (O2 : CO2; 80 : 20). Lipid oxidation was determined using the 2-thiobarbituric acid-reactive substances assay; α-tocopherol was determined by HPLC; fatty acid methyl esters were determined using Gas Chromatography. Using a randomised complete block design, treatment means were compared by either ANOVA or repeated measures ANOVA using the MIXED procedure of SAS. Total polyunsaturated fatty acid (PUFA) concentrations were not affected by treatment, n-3 PUFAs were higher (P < 0.001) and the ratio of n-6 to n-3 PUFAs was lower (P < 0.001) in muscle from P, PC25 and PC50 compared to C. α-Tocopherol concentration was higher in muscle from P compared to PC50 and C bulls (P = 0.001) and decreased (P < 0.001) in all samples by day 14. Lipid oxidation was higher in muscle from C compared to P bulls on day 10 and day 14 of storage (P < 0.01). Finishing on pasture without supplementation did not affect beef colour stability and led to lower lipid oxidation, possibly due to the higher α-tocopherol concentration compared to concentrate finished beef.
Guinea fowl production is increasing in developing countries and has a crucial role in the fight against poverty. However, the feed cost is very high, especially the soya bean meal cost, and farmers cannot afford to buy commercial feed. Consequently, animals do not receive feed adapted to their nutritional needs and they exhibit poor performance. The aim of this paper is to partially substitute soya bean meal by local by-products, discarded, in abundant supply and not used in human nutrition. French Galor guinea fowl (Numida meleagris) and local African guinea fowl (150 birds per breed) were reared for 16 weeks and fed the same starter diet for the initial 4 weeks. From 4 weeks of age, experimental birds from each breed were randomly assigned to three grower isoproteic and isolipidic dietary treatments, each containing five replications (floor pens); each replication included 10 birds of the same breed. The guinea fowl of each breed were fed either control grower diet using soya bean meal as the protein supplement GS, or trial grower diet GN (soya bean meal supplement partially substituted by 15% cashew nut (Anacardium occidentale) meal) or trial grower diet GH (soya bean meal supplement partially substituted by 15% hevea seed (Hevea brasiliensis) meal). The results indicated that hevea seed meal contained a high content of n-3 polyunsaturated fatty acids (PUFAs) (21.2% of total fatty acids (FAs)). The use of hevea seed meal in guinea fowl grower diet was found to exert no adverse effect on growth performance and carcass yield. However, the use of cashew nut meal led to negative effects on performance like daily weight gain and feed conversion ratio. Therefore, cashew nut meal cannot be considered as a suitable partial substitute for soya bean meal in diets. The use of hevea seed meal led to a very low abdominal fat proportion and low blood triglyceride and cholesterol content. Additionally, inclusion of dietary hevea seed meal resulted in guinea fowl meat enriched in PUFAs, especially n-3 FAs, thereby significantly improving the nutritional value.
Oxidative stress and dysregulated antioxidant defence may be involved in the pathophysiology of schizophrenia. In the present study, we investigated changes in antioxidants and oxidative stress from an acute to a later stable phase. We hypothesised that the levels of oxidative markers are increased in schizophrenia compared with healthy controls; change from the acute to the stable phase; and are associated with the levels of membrane polyunsaturated fatty acids (PUFAs) and symptom severity.
Methods:
Fifty-five patients with schizophrenia spectrum disorders, assessed during an acute phase and 5 years later during a stable phase, and 51 healthy controls were included. We measured antioxidants (α-tocopherol, uric acid, albumin and bilirubin), markers of oxidative stress (F2-isoprostane and reactive oxygen metabolites) and membrane fatty acids. Antioxidants and oxidative stress markers were compared in schizophrenia versus healthy controls, adjusting for differences in sex, age and smoking, and changes over time. Associations between symptoms and PUFA were also investigated.
Results:
In the acute phase, α-tocopherol was significantly higher (p < 0.001), while albumin was lower (p < 0.001) compared with the stable phase. Changes in α-tocopherol were associated with PUFA levels in the acute phase. In the stable phase, schizophrenia patients had higher uric acid (p = 0.009) and lower bilirubin (p = 0.046) than healthy controls. CRP was higher in patients in the stable phase (p < 0.001), and there was no significant change from the acute phase.
Conclusion:
The present findings of change in antioxidant levels in the acute versus stable phase of schizophrenia the present findings suggest that redox regulation is dynamic and changes during different phases of the disorder.
In the last decades, a new awareness on human nutrition has increased and the concept of ‘food’ has changed from ‘source of nutrients for body’s needs’ to ‘health promoter’. Fruits and vegetables have always been considered beneficial for human health. More recent studies have demonstrated that bioactive components are also present in animal-derived foods, such as milk and dairy products. A broader concept of ‘nutritional safety’ implies the knowledge of how the nutrients contained in animal-derived foods positively affect human health, and how to increase their content. The improvement of dairy products fatty acid (FA) composition can involve strategies in animal nutrition. This review aims to discuss the role of FAs supplementation in ameliorating milk fat composition, environmental impact and animal health. In particular, we have focused on the role of n-3 and CLA FAs and how animal nutrition strategies can positively affect both human and animal health. Several studies have demonstrated that through adequate nutritional strategies is possible to manipulate and improve FA composition of milk and derived products (cheese). Moreover, feeding animals with n-3 FAs has proved to reduce emission of methane (CH4), but further nutritional strategies are needed in order to address this crucial environmental issue. In relation to animal health, n-3 FAs have been proved to modulate immune and inflammatory response in dairy ruminants. Recent studies have addressed the potential programming effects of increased maternal n-3 polyunsaturated FAs intake on offspring’s immune functions showing that feeding bioactive FAs to pregnant animals can affect progeny health status.
Burrata is an Italian fresh ‘pasta filata’ cheese made from cow's milk and cream that is rapidly spreading in Europe. It has very high caloric content, and a technological protocol was developed for producing a reduced-fat type and fortifying it with polyunsaturated fatty acids (PUFA) of vegetable origin. A satisfactory reduced-fat prototype was obtained by using a 14% fat cream, which was specifically developed by diluting double cream with a suspension of carob seed flour. The composition of the new cheese changed with respect to the control, but the sensory characteristics were not impaired. Moisture increased from 62·6 to 68·4%, fat on dry matter decreased from 59·1 to 34·7%, and the caloric content decreased from 1060·8 to 718 J/100 g. Proteolysis and lipolysis were not affected by the technological modifications: after 7 d storage, the electrophoretic pattern of caseins and the free fatty acids profile of experimental and control cheeses were not significantly different. Fortification of reduced-fat Burrata with PUFA was obtained by using two commercial formulates available at a compatible price with the current economic values of the cheese. The two formulates derived from flaxseeds and Carthamus tinctorius oil and allowed enrichment in C18 :3 : n3 (α-linolenic acid, ALA), and 9cis,11trans- and 10trans,12cis- conjugated linoleic acid (CLA), respectively. Fortification was easy to perform under a technical point of view, but the negative sensory impact limited fortification at a maximum of 7·0 mg g-1 fat ALA and 6·8 g-1 fat CLA.
Inter-annual and seasonal variability in the nutritional parameters of the edible portion of skipjack tuna (Katsuwonus pelamis) collected from the Arabian Sea were determined for a period of 4 years. Greater levels of long chain n-3 fatty acids (35% during pre-monsoon), critical in the human diet for their anti-inflammatory properties with greater n-3:n-6 fatty acid ratio (8:12) demonstrated that this species may serve as an alternative to balance the greater amount of n-6 fatty acids. The present study demonstrated skipjack tuna as a significant source of protein, amino acids, minerals and vitamins. A balanced essential to non-essential amino acid ratio (1.2:1.4) in the fillets indicated that this species could provide well-balanced protein depositions. Vitamins A and K1 demonstrated post-monsoon maxima, whilst vitamins D3 and E showed pre-monsoon maxima. Greater calcium (172 mg 100 g−1) and phosphorus contents (923 mg 100 g−1) were recorded in the fillets of skipjack tuna during the pre-monsoon season. The chlorophyll-a concentration and sea surface temperature of its habitat were considered to understand their effect on the nutritional composition of skipjack tuna all through the study period. Significant correlation between long chain n-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid (r2 ~ 0.99) of skipjack tuna alongside chlorophyll-a concentration was observed, particularly during the monsoon. The lesser atherogenic/thrombogenicity indices (<1), greater hypocholesterolaemic/hypercholesterolaemic ratio (>1.0), and lesser cholesterol contents (<50 mg 100 g−1) of the fillets in skipjack tuna contributed towards its parameters to be qualified as a high value, balanced nutritional source.
In recent years, polyunsaturated fatty acids (PUFA) have received considerable attention in both human and animal nutrition, particularly those of the n-3 family (omega-3 fatty acids). These are PUFA in which the first double bond is situated on the third carbon atom from the methyl end of the fatty acid molecule. Consumption of n-3 PUFA are low, particularly the long chain (>18 carbon atoms) ones that are most commonly found in fish oils. As a means of increasing the low consumption of the long chain n-3 PUFA in humans, there is interest in the enrichment of poultry meat with these fatty acids for people seeking healthy lifestyles.
This study was conducted to determine the effects of feeding olive cake and linseed to lambs on the volatile organic compounds (VOCs) in raw and cooked meat. Four groups of eight male Appenninica lambs each were fed: conventional cereal-based concentrates (diet C), concentrates containing 20% on a dry matter (DM) basis of rolled linseed (diet L), concentrates containing 35% DM of stoned olive cake (diet OC), or concentrates containing both rolled linseed (10% DM) and stoned olive cake (17% DM; diet OCL). The longissimus dorsi muscle of each lamb was sampled at slaughter and was subjected to VOC profiling through the use of SPME-GC-MS. In the raw meat, the concentration of 3-methylpentanoic acid was higher in treatment C as compared with treatments L, OC and OCL (P<0.01). Moreover the level of nonanoic acid was greater in treatments C and OC than in treatment L (P<0.05). With respect to alcohols, in raw meat the amount of 2-phenoxyethanol in treatment OCL was lower than in treatments C (P<0.01) and OC (P<0.05), while in cooked meat the amount of 1-pentanol was higher in treatment C than in treatment OC (P<0.05). Apart from these compounds, none of the lipid oxidation-derived volatiles was significantly affected by the dietary treatment. Therefore, the results suggest that the replacement of cereal concentrates with linseed and/or olive cake did not cause appreciable changes in the production of volatile organic compounds in lamb meat.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.
The World Health Organization estimates that major depression affects about 350 million people all over the world and reports this disorder as the major contributor to the global burden of diseases. Despite the well-defined symptomatology, major depression is a heterogeneous psychiatric disorder whose pathophysiology is not clearly established. Although several treatments are available, most depressed patients do not achieve the complete remission of symptoms. Factors linked to the persistence of the disorder have been investigated, particularly those related to the way of life. Moreover, it has been suggested that nutritional aspects may influence its development. Among them, a diet rich in ω-3 has been associated with a reduced risk of major depression, although its deficiency is associated with depressive disorders.
Methods
This review provides a general view about evidences of the use of ω-3 in major depression cases.
Results
Several studies have demonstrated beneficial effects of ω-3 in the prevention and treatment of major depression. However, not all the results have shown significant statistical benefits.
Conclusions
More studies are necessary to clarify detailed mechanisms of the antidepressant effects of ω-3 and may explain the source of contradictions in results published until the moment.
Few trials have evaluated the metabolic effects and health outcomes of lowering dietary n-6 PUFA. The objectives of the present paper were (1) to report the methods employed to lower dietary n-6 PUFA, while either increasing or maintaining n-3 PUFA intake and (2) to validate our methods with 24 h recalls and erythrocyte fatty acid analyses. A total of sixty-seven subjects were randomised to either (1) an average-n-3 PUFA, low-n-6 PUFA (L6) intervention designed to lower linoleic acid (LA; ≤ 2·5 % of energy (en%)) and arachidonic acid ( ≤ 60 mg/d), while maintaining an average US intake of n-3 PUFA or (2) a high-n-3 PUFA, low-n-6 PUFA (H3-L6) intervention designed to lower n-6 LA, while increasing the n-3 PUFA α-linolenic acid (ALA; ≥ 1·5 en%) and EPA+DHA ( ≥ 1000 mg/d). Pre- and intra-intervention nutrient intakes were estimated with six 24 h dietary recalls per subject. Both groups achieved the targeted reductions in dietary LA to ≤ 2·5 en% (median LA 2·45 (2·1, 3·1); P< 0·001). Intakes of n-3 PUFA did not change for the L6 group. Target increases in n-3 ALA (median 1·6 en%, (1·3, 2·0), P< 0·001) and EPA+DHA (1482 mg, (374, 2558), P< 0·001) were achieved in the H3-L6 group. Dietary changes were validated by corresponding changes in erythrocyte n-6 and n-3 fatty acid composition. Dietary LA can be lowered to ≤ 2·5 en%, with or without concurrent increases in dietary n-3 PUFA, in an outpatient clinical trial setting using this integrated diet method.
The aims of the present study were to review the validity of dietary methods used to measure the usual long chain (LC) omega-3 polyunsaturated fatty acid (n-3 PUFA) intake of a population and to assess the usefulness of different biomarkers of n-3 PUFA in healthy humans. Two systematic literature searches were conducted until May 2011 to update previous systematic reviews. The first literature search aimed to find studies validating the methodology used for measuring the dietary intake of n-3 PUFA. The second search aimed to find human intervention studies in which n-3 PUFA status changed after 2 weeks of n-3 PUFA supplementation. Sixteen studies were identified for inclusion in the first review. Correlation coefficients between fatty acids in subcutaneous fat or blood lipids and dietary intake of n-3 PUFA from different questionnaires were similar. Subcutaneous fat has been reported as the best reference method for some authors, and these studies showed moderate correlation coefficients with no dietary intake method being superior to any other. As for the evaluation of biomarkers of docosahexaenoic acid (DHA, 22 : 6 n-3) and eicosapentaenoic acid (EPA, 20 : 5n-3) status in response to supplementation, the new search reaffirmed and reinforced the evidence supporting that plasma phospholipid DHA, erythrocyte DHA, and platelet DHA were all effective and robust biomarkers of DHA status. Our findings only confirmed earlier studies and did not provide evidence for reaching new conclusions.
The projected stagnation in the catch from global fisheries and the continuing expansion of aquaculture is considered against the background that fishmeal and fish oil are major feed stocks for farmed salmon and trout, and also for marine fish. The dietary requirement of these farmed fish for high-quality protein, rich in essential amino acids, can be met by sources other than fishmeal. However, the highly-polyunsaturated fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) present in high concentrations in fish oil are essential dietary constituents for marine fish and highly-desirable dietary constituents for salmonids. Currently, there is no feasible alternative source to fish oil for these nutrients in fish feeds. Vegetable oils rich in linoleic acid (18:2n-6) can partially substitute for 20:5n-3 and 22:6n-3 in salmonid and marinefish feeds. However, this is nutritionally undesirable for human nutrition because the healthpromoting effects of fish-derived 20:5n-3 and 22:6n-3 reflect a very high intake of 18:2n-6 relative to linolenic acid (18:3n-3) in Western diets. If partial replacement of fish oils in fish feeds with vegetable oils becomes necessary in future, it is argued that 18:3n-3-rich oils, such as linseed oil, are the oils of choice because they are much more acceptable lrom a human nutritional perspective, especially given the innate ability of freshwater fish, including salmonids, to convert dietary 18:3n-3 to 20:5n-3 and 22:6n-3. In the meantime, a more judicious use of increasinglyexpensive fish oil in aquaculture is recommended. High priorities in the future development of aquaculture are considered to be genetic improvement of farmed fish stocks with enhanced abilities to convert C18 to C20 and C22n-3 polyunsaturated fatty acids, enhanced development of primary production of 20:5n-3 and 22:6n-3 by single-cell marine organisms, and continuing development of new species.