We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The popularity of green, social and sustainability-linked bonds (GSS bonds) continues to rise, with circa US$939 billion of such bonds issued globally in 2023. Given the rising popularity of ESG-related investment solutions, their relatively recent emergence, and limited research in this field, continued investigation is essential. Extending non-traditional techniques such as neural networks to these fields creates a good blend of innovation and potential. This paper follows on from our initial publication, where we aim to replicate the S&P Green Bond Index (i.e. this is a time series problem) over a period using non-traditional techniques (neural networks) predicting 1 day ahead. We take a novel approach of applying an N-BEATS model architecture. N-BEATS is a complex feedforward neural network architecture, consisting of basic building blocks and stacks, introducing the novel doubly residual stacking of backcasts and forecasts. In this paper, we also revisit the neural network architectures from our initial publication, which include DNNs, CNNs, GRUs and LSTMs. We continue the univariate time series problem, increasing the data input window from 1 day to 2 and 5 days respectively, whilst still aiming to predict 1 day ahead.
Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include an instructor's manual with solutions and additional exercises, PowerPoint lecture slides, and datasets. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.
1. Understanding whether a species still persists, or the timing of its extinction is challenging, however, such knowledge is fundamental for effective species management.
2. For the vast majority of species our understanding of their existence is based solely on sighting data that can range from museum specimens and clear photographs, through vocalisations, to markings and oral accounts.
3. Here we review the methods that have been developed to infer the extinction of species from a sighting record, providing an understanding of their assumptions and applications. We have also produced an RShiny package which can be used to implement some of the methods presented in the article.
4. While there are a number of potential areas that could be further developed, the methods reviewed provide a useful tool for inferring species extinction.
Synthetic controls (SCs) are widely used to estimate the causal effect of a treatment. However, they do not account for the different speeds at which units respond to changes. Reactions may be inelastic or “sticky” and thus slower due to varying regulatory, institutional, or political environments. We show that these different reaction speeds can lead to biased estimates of causal effects. We therefore introduce a dynamic SC approach that accommodates varying speeds in time series, resulting in improved SC estimates. We apply our method to re-estimate the effects of terrorism on income (Abadie and Gardeazabal [2003, American Economic Review 93, 113–132]), tobacco laws on consumption (Abadie, Diamond, and Hainmueller [2010, Journal of the American Statistical Association 105, 493–505]), and German reunification on GDP (Abadie, Diamond, and Hainmueller [2015, American Journal of Political Science 59, 495–510]). We also assess the method’s performance using Monte Carlo simulations. We find that it reduces errors in the estimates of true treatment effects by up to 70% compared to traditional SCs, improving our ability to make robust inferences. An open-source R package, dsc, is made available for easy implementation.
While a large body of research explores the federal-level influences over distributive politics decisions, very little attention has been given to the active role state and local governments play in the geographic distribution of federal funds. Before presidents, legislators, and agency leaders can influence the selection of federal grants, state and local governments must expend time and resources to submit grant proposals. We focus on grant applications as our unit of analysis and advance a theory that congressional representation influences the grant application behavior of state and local governments. We analyze US Department of Transportation grant applications and awards from 2009 to 2022 and find evidence that congressional representation meaningfully influences state-level grant application behavior. States apply more aggressively for federal transportation grants when represented by senators in the Senate majority party, and states apply more efficiently for grants when represented by a senator holding an advantageous committee leadership post.
Discusses statistical methods, covering random variables and variates, sample and population, frequency distributions, moments and moment measures, probability and stochastic processes, discrete and continuous probability distributions, return periods and quantiles, probability density functions, parameter estimation, hypothesis testing, confidence intervals, covariance, regression and correlation analysis, time-series analysis.
Tuberculosis (TB) remains a global leading cause of death, necessitating an investigation into its unequal distribution. Sun exposure, linked to vitamin D (VD) synthesis, has been proposed as a protective factor. This study aimed to analyse TB rates in Spain over time and space and explore their relationship with sunlight exposure. An ecological study examined the associations between rainfall, sunshine hours, and TB incidence in Spain. Data from the National Epidemiological Surveillance Network (RENAVE in Spanish) and the Spanish Meteorological Agency (AEMET in Spanish) from 2012 to 2020 were utilized. Correlation and spatial regression analyses were conducted. Between 2012 and 2020, 43,419 non-imported TB cases were reported. A geographic pattern (north–south) and distinct seasonality (spring peaks and autumn troughs) were observed. Sunshine hours and rainfall displayed a strong negative correlation. Spatial regression and seasonal models identified a negative correlation between TB incidence and sunshine hours, with a four-month lag. A clear spatiotemporal association between TB incidence and sunshine hours emerged in Spain from 2012 to 2020. VD levels likely mediate this relationship, being influenced by sunlight exposure and TB development. Further research is warranted to elucidate the causal pathway and inform public health strategies for improved TB control.
The market for green bonds, and environmentally aligned investment solutions, is increasing. As of 2022, the market of green bonds exceeded USD 2 trillion in issuance, with India, for example, having issued its first-ever sovereign green bonds totally R80bn (c.USD1bn) in January 2023. This paper lays the foundation for future papers and summarises the initial stages of our analysis, where we try to replicate the S&P Green Bond Index (i.e. this is a time series problem) over a period using non-traditional techniques. The models we use include neural networks such as CNNs, LSTMs and GRUs. We extend our analysis and use an open-source decision tree model called XGBoost. For the purposes of this paper, we use 1 day’s prior index information to predict today’s value and repeat this over a period of time. We ignore for example stationarity considerations and extending the input window/output horizon in our analysis, as these will be discussed in future papers. The paper explains the methodology used in our analysis, gives details of general underlying background information to the architecture models (CNNs, LSTMs, GRUs and XGBoost), as well as background to regularisation techniques specifically L2 regularisation, loss curves and hyperparameter optimisation, in particular, the open-source library Optuna.
Detection of defects and identification of symptoms in monitoring industrial systems is a widely studied problem with applications in a wide range of domains. Most of the monitored information extracted from systems corresponds to data series (or time series), where the evolution of values through one or multiple dimensions directly illustrates its health state. Thus, an automatic anomaly detection method in data series becomes crucial. In this article, we propose a novel method based on a convolutional neural network to detect precursors of anomalies in multivariate data series. Our contribution is twofold: We first describe a new convolutional architecture dedicated to multivariate data series classification; We then propose a novel method that returns dCAM, a dimension-wise Class Activation Map specifically designed for multivariate time series that can be used to identify precursors when used for classifying normal and abnormal data series. Experiments with several synthetic datasets demonstrate that dCAM is more accurate than previous classification approaches and a viable solution for discriminant feature discovery and classification explanation in multivariate time series. We then experimentally evaluate our approach on a real and challenging use case dedicated to identifying vibration precursors on pumps in nuclear power plants.
People often test changes to see if the change is producing the desired result (e.g., does taking an antidepressant improve my mood, or does keeping to a consistent schedule reduce a child’s tantrums?). Despite the prevalence of such decisions in everyday life, it is unknown how well people can assess whether the change has influenced the result. According to interrupted time series analysis (ITSA), doing so involves assessing whether there has been a change to the mean (‘level’) or slope of the outcome, after versus before the change. Making this assessment could be hard for multiple reasons. First, people may have difficulty understanding the need to control the slope prior to the change. Additionally, one may need to remember events that occurred prior to the change, which may be a long time ago. In Experiments 1 and 2, we tested how well people can judge causality in 9 ITSA situations across 4 presentation formats in which participants were presented with the data simultaneously or in quick succession. We also explored individual differences. In Experiment 3, we tested how well people can judge causality when the events were spaced out once per day, mimicking a more realistic timeframe of how people make changes in their lives. We found that participants were able to learn accurate causal relations when there is a zero pre-intervention slope in the time series but had difficulty controlling for nonzero pre-intervention slopes. We discuss these results in terms of 2 heuristics that people might use.
Under time series analysis, one proceeds from Fourier analysis to the design of windows, then spectral analysis (e.g. computing the spectrum, the cross-spectrum between two time series, wavelets, etc.) and the filtering of frequency signals. The principal component analysis method can be turned into a spectral method known as singular spectrum analysis. Auto-regressive processes and Box-Jenkins models are also covered.
The Easterlin paradox states that (1) in a given context richer people are on average happier than poorer people, but (2) over time greater national income per head does not cause greater national happiness. Statement (1) is certainly true. As a benchmark, a unit increase in log income raises wellbeing by 0.3 points (out of 10). The share of the within country variance in wellbeing explained by income inequality is 3% or less. So income is in no sense a proxy for wellbeing.
Across countries the effect of a unit change in log income per capita (other things equal) is also around 0.3 points of wellbeing. But over time the effect of economic growth on wellbeing remains unclear. Studies of individuals show that in most cases a rise in other people’s income reduces your own wellbeing. From a policy point of view, this means that, when a person decides to work harder, she imposes a cost on other people. The natural way to control this is a negative externality is by corrective taxation.
Wellbeing rises in booms and falls in slumps – partly due to unemployment but also due to loss-aversion. So economic stability is vital.
In this article a broad perspective incorporating elements of time series theory is presented for conceptualizing the data obtained in multi-trial judgment experiments. Recent evidence suggests that sequential context effects, assimilation and contrast, commonly found in psychophysical judgment tasks, may be present in judgments of abstract magnitudes. A time series approach for analyzing single-subject data is developed and applied to expert prognostic judgments of risk for heart disease with an emphasis on detecting possible sequential context effects. The results demonstrate that sequential context effects do exist in such expert prognostic judgments. Contrast and assimilation were produced by cue series; the latter occurring more frequently. Experts also showed assimilation of prior responses that was independent of the cue series input. Time series analysis also revealed that abrupt or large trial-by-trial changes in the value of cues that receive the most attention in prognostic judgment tasks can disrupt the accuracy of these judgments. These findings suggest that a time series approach is a useful alternative to ordinary least squares regression, providing additional insights into the cognitive processes operating during multi-cue judgment experiments.
Interrupted time-series graphs are often judged by eye. Such a graph might show, for example, patient symptom severity (y) on each of several days (x) before and after a treatment was implemented (interruption). Such graphs might be prone to systematic misjudgment because of serial dependence, where random error at each timepoint persists into later timepoints. An earlier study (Matyas & Greenwood, 1990) showed evidence of systematic misjudgment, but that study has often been discounted due to methodological concerns. We address these concerns and others in two experiments. In both experiments, serial dependence increased mistaken judgments that the interrupting event led to a change in the outcome, though the pattern of results was less extreme than in previous work. Receiver operating characteristics suggested that serial dependence both decreased discriminability and increased the bias to decide that the interrupting event led to a change. This serial dependence effect appeared despite financial incentives for accuracy, despite feedback training, and even in participants who had graduate training relevant to the task. Serial dependence could cause random error to be misattributed to real change, thereby leading to judgments that interventions are effective even when they are not.
The papers in this symposium use Monte Carlo simulations to demonstrate the consequences of estimating time series models with variables that are of different orders of integration. In this summary, I do the following: very briefly outline what we learn from the papers; identify an apparent contradiction that might increase, rather than decrease, confusion around the concept of a balanced time series model; suggest a resolution; and identify a few areas of research that could further increase our understanding of how variables with different dynamics might be combined. In doing these things, I suggest there is still a lack of clarity around how a research practitioner demonstrates balance, and demonstrates what Pickup and Kellstedt (2021) call I(0) balance.
The small and somewhat fringe praxis of processual self-esteem research is described with respect to its enactment of a process ontology. The chapter shows that a process approach has resulted in a focus on ‘how’ questions in self-esteem research (rather than on predictive validity, for example) and a more pluralistic approach to the operationalization of self-esteem. What the various processual-studies reviewed have in common is a conceptual and methodological approach to self-esteem as a situated and action-based process, rather than a thing that individuals have to different degrees. Here, the central role of situational affordances is highlighted. This processual praxis often relies explicitly on complex dynamic systems principles, such as self-organization, emergence, variability, and attractor landscapes. With processes and actions as its focus, this praxis constructs self-esteem knowledge that emphasizes one’s agency in the world and the centrality of our actual context-bound actions and experiences as we move through it. This chapter ends with a discussion of how a process approach is beneficial for the lived reality of self-esteem, where individuals are encouraged to embrace and reflect on their situated and fluctuating experiences of self, rather than a pursuit of ‘high’ self-esteem.
Delving into the specifics of spatial and temporal analytics, this chapter explores topics such as spatial neighborhood and temporal evolution of large amounts of network traffic data.
The US government invests substantial sums to control the HIV/AIDS epidemic. To monitor progress toward epidemic control, PEPFAR, or the President’s Emergency Plan for AIDS Relief, oversees a data reporting system that includes standard indicators, reporting formats, information systems, and data warehouses. These data, reported quarterly, inform understanding of the global epidemic, resource allocation, and identification of trouble spots. PEPFAR has developed tools to assess the quality of data reported. These tools made important contributions but are limited in the methods used to identify anomalous data points. The most advanced consider univariate probability distributions, whereas correlations between indicators suggest a multivariate approach is better suited. For temporal analysis, the same tool compares values to the averages of preceding periods, though does not consider underlying trends and seasonal factors. To that end, we apply two methods to identify anomalous data points among routinely collected facility-level HIV/AIDS data. One approach is Recommender Systems, an unsupervised machine learning method that captures relationships between users and items. We apply the approach in a novel way by predicting reported values, comparing predicted to reported values, and identifying the greatest deviations. For a temporal perspective, we apply time series models that are flexible to include trend and seasonality. Results of these methods were validated against manual review (95% agreement on non-anomalies, 56% agreement on anomalies for recommender systems; 96% agreement on non-anomalies, 91% agreement on anomalies for time series). This tool will apply greater methodological sophistication to monitoring data quality in an accelerated and standardized manner.
In this introductory chapter, we briefly go over the definitions of terms and tools we need for data analysis. Among the tools, MATLAB is the software package to use. The other tool is mathematics. Although much of the mathematics are not absolutely required before using this book, a person with a background in the relevant mathematics will always be better positioned with insight to learn the data analysis skills for real applications.
It is understood that ensuring equation balance is a necessary condition for a valid model of times series data. Yet, the definition of balance provided so far has been incomplete and there has not been a consistent understanding of exactly why balance is important or how it can be applied. The discussion to date has focused on the estimates produced by the general error correction model (GECM). In this paper, we go beyond the GECM and beyond model estimates. We treat equation balance as a theoretical matter, not merely an empirical one, and describe how to use the concept of balance to test theoretical propositions before longitudinal data have been gathered. We explain how equation balance can be used to check if your theoretical or empirical model is either wrong or incomplete in a way that will prevent a meaningful interpretation of the model. We also raise the issue of “
$I(0)$
balance” and its importance.