In this study, the resolvent-based estimation (RBE) is further generalised to cases with arbitrarily sampled measurements in time, where the generalised RBE is denoted as GRBE in this study. Different from the RBE that constructs the transfer function at each frequency, the GRBE minimises the estimation error energy in the physical temporal domain by considering the forcing and noise statistics. The GRBE is validated by estimating the complex Ginzburg–Landau equation and turbulent channel flows with the friction Reynolds number $Re_{\tau }=186$, 547 and 934, where the results from the RBE are also included. When the measurements are temporally resolved, the estimation results of the two approaches are equivalent to each other, and both match well with the reference numerical results. For the temporally unresolved cases, the estimation errors from the GRBE are obviously lower than those from the RBE. After validation, the GRBE is applied to investigate the impacts of the abundance of the measured information, including the temporal information and sensor types, on the estimation accuracy. Compared with the mean square error (MSE) in the estimation with temporally resolved measurements, that with measurements at only one snapshot, i.e. without any temporal information, increases by approximately $15\,\%$. On the other hand, it can effectively improve the estimation accuracy by increasing the number of sensor types. With temporally resolved measurements, the relative MSE decreases by $12.3\,\%$ when the sensor types increase from $\lbrace \tau _u \rbrace$ to $\lbrace \tau _u,\tau _w,p \rbrace$, where $\tau_u$, $\tau_w$ and p are the streamwise shear stress, spanwise shear stress and pressure at the wall. Finally, several existing forcing models are incorporated into the GRBE to investigate their performance in the linear estimation of flow state. The wall-distance-dependent model (W-model) results match well with the optimal linear estimations when the measurements are temporally unresolved. Meanwhile, with the increase of temporal information of the measurement, the estimation errors from the tested W-model and the scale-dependent model ($\lambda$-model) both increase, which contradicts the tendency observed in the optimal linear GRBE estimation results. Such a phenomenon highlights the importance of proper modelling of the forcing in the temporal domain for the accuracy of flow state estimation.