We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents numerical simulations of the free fall of homogenous cylinders of length-to-diameter ratios $2$, $3$ and 5 and solid-to-fluid-density ratios $\rho _s/\rho$ going from 0 to 10 in transitional regimes. The path instabilities are shown to be due to two types of transitional states. The well-known fluttering state is a solid mode, characterised by significant oscillations of the cylinder axis due to a strong interaction between the vortex shedding in the wake and the solid degrees of freedom. Weakly oscillating, mostly irregular trajectories, are fluid modes, associated with purely fluid instabilities in the wake. The interplay of solid and fluid modes leads to a varying scenario in which the length-to-diameter and density ratios play an important role. The description is accompanied by the presentation of the identified transitional states in terms of path characteristics and vorticity structure of the wakes and by bifurcation diagrams showing the evolution of asymptotic states with increasing Galileo numbers. There appears to be a strong difference between the behaviour of cylinders of aspect ratio $L/d=3$ and 5. A similar contrast is stated between light cylinders of density ratios $\rho _s/\rho \le 2$ and dense cylinders of density ratios 5 and 10. Finally, the question of the scatter of values of the drag coefficient and of the frequency of oscillations raised in the literature is addressed. It is shown, that in addition to external parameters (Galileo number, density and aspect ratio) the amplitude of oscillations characterising the instability development is to be taken into account to explain this scatter. Fits of the simulation results to simple correlations are proposed. Namely that of the drag coefficient proves to be accurate (better than 1 % of accuracy) but also that of the Strouhal number (a few per cent of accuracy) may be of practical use.
In a vertical channel driven by an imposed horizontal temperature gradient, numerical simulations (Gao et al., Phys. Rev. E, vol. 88, 2013, 023010; Phys. Rev. E, vol. 91, 2015, 013006; Phys. Rev. E, vol. 97, 2018, 053107) have previously shown steady, time-periodic and chaotic dynamics. We explore the observed dynamics by constructing invariant solutions of the three-dimensional Oberbeck–Boussinesq equations, characterizing the stability of these equilibria and periodic orbits, and following the bifurcation structure of the solution branches under parametric continuation in Rayleigh number. We find that in a narrow vertically periodic domain of aspect ratio 10, the flow is dominated by the competition between three and four co-rotating rolls. We demonstrate that branches of three- and four-roll equilibria are connected and can be understood in terms of their discrete symmetries. Specifically, the $D_4$ symmetry of the four-roll branch dictates the existence of qualitatively different intermediate branches that themselves connect to the three-roll branch in a transcritical bifurcation due to $D_3$ symmetry. The physical appearance, disappearance, merging and splitting of rolls along the connecting branch provide a physical and phenomenological illustration of the equivariant theory of $D_3$–$D_4$ mode interaction. We observe other manifestations of the competition between three and four rolls, in which the symmetry in time or in the transverse direction is broken, leading to limit cycles or wavy rolls, respectively. Our work highlights the interest of combining numerical simulations, bifurcation theory and group theory, in order to understand the transitions between and origin of flow patterns.
Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.
We use direct numerical simulations to study convection in rotating Rayleigh–Bénard convection in horizontally confined geometries of a given aspect ratio, with the walls held at fixed temperatures. We show that this arrangement is unconditionally unstable to flow that takes the form of wall-adjacent convection rolls. For wall temperatures close to the temperatures of the upper or lower boundaries, we show that the base state undergoes a Hopf bifurcation to a state comprised of spatiotemporal oscillations – ‘wall modes’ – precessing in a retrograde direction. We study the saturated nonlinear state of these modes, and show that the velocity boundary conditions at the upper and lower boundaries are crucial to the formation and propagation of the wall modes: asymmetric velocity boundary conditions at the upper and lower boundaries can lead to prograde wall modes, while stress-free boundary conditions at both walls can lead to wall modes that have no preferred direction of propagation.
Small heavy particles cannot be attracted into a region of closed streamlines in a non-accelerating frame (Sapsis & Haller, Chaos, vol. 20, issue 1, 2010, 017515). In a rotating system of vortices, however, particles can get trapped (Angilella, Physica D, vol. 239, issue 18, 2010, pp. 1789–1797) in the vicinity of vortices. We perform numerical simulations to examine trapping of inertial particles in a prototypical rotating flow described by a rotating pair of Lamb–Oseen vortices of identical strength, in the absence of gravity. Our parameter space includes the particle Stokes number $St$, which is a measure of the particle's inertia, and a density parameter $R$, which measures the particle's density relative to the fluid. In particular, we study the regime $0< R<1$ and $0< St<1$, which corresponds to an inertial particle that is finitely denser than the fluid. We show that in this regime, a significant fraction of particles can be trapped indefinitely close to the vortices, and display extreme clustering into objects of smaller dimension: attracting fixed points and limit cycles of different periods including chaotic attractors. As $St$ increases for a given $R$, we may have an incomplete or complete period-doubling route to chaos, as well as an unusual period-halving route back to a fixed point attractor. The fraction of trapped particles can be a non-monotonic function of $St$, and we may even have windows in $St$ for which no particle trapping occurs. At $St$ larger than a critical value, beyond which trapping ceases to exist, significant fractions of particles can spend long but finite times in the vortex vicinity. The inclusion of the Basset–Boussinesq history (BBH) force is imperative in our study due to the finite density of the particle. We observe that the BBH force significantly increases the basin of attraction over which trapping occurs, and also widens the range of $St$ for which trapping can be realised. Extreme clustering can be of significance in a host of physical applications, including planetesimal formation by aggregation of dust in protoplanetary discs, and aggregation of phytoplankton in the ocean. Our findings in the prototypical model provide impetus to conduct experiments and further numerical investigations to understand clustering of inertial particles.
Small finite-size particles suspended in fluid flow through an enclosed curved duct can focus to points or periodic orbits in the two-dimensional duct cross-section. This particle focusing is due to a balance between inertial lift forces arising from axial flow and drag forces arising from cross-sectional vortices. The inertial particle focusing phenomenon has been exploited in various industrial and medical applications to passively separate particles by size using purely hydrodynamic effects. A fixed size particle in a circular duct with a uniform rectangular cross-section can have a variety of particle attractors, such as stable nodes/spirals or limit cycles, depending on the radius of curvature of the duct. Bifurcations occur at different radii of curvature, such as pitchfork, saddle-node and saddle-node infinite period (SNIPER), which result in variations in the location, number and nature of these particle attractors. By using a quasi-steady approximation, we extend the theoretical model of Harding et al. (J. Fluid Mech., vol. 875, 2019, pp. 1–43) developed for the particle dynamics in circular ducts to spiral duct geometries with slowly varying curvature, and numerically explore the particle dynamics within. Bifurcations of particle attractors with respect to radius of curvature can be traversed within spiral ducts and give rise to a rich nonlinear particle dynamics and various types of tipping phenomena, such as bifurcation-induced tipping (B-tipping), rate-induced tipping (R-tipping) and a combination of both, which we explore in detail. We discuss implications of these unsteady dynamical behaviours for particle separation and propose novel mechanisms to separate particles by size in a non-equilibrium manner.
Symmetry-breaking bifurcations, where a flow state with a certain symmetry undergoes a transition to a state with a different symmetry, are ubiquitous in fluid mechanics. Much can be understood about the nature of these transitions from symmetry alone, using the theory of groups and their representations. Here, we show how the extensive databases on groups in crystallography can be exploited to yield insights into fluid dynamical problems. In particular, we demonstrate the application of the crystallographic layer groups to problems in fluid layers, using thermal convection as an example. Crystallographic notation provides a concise and unambiguous description of the symmetries involved, and we advocate its broader use by the fluid dynamics community.
The present study investigates the modal stability of the steady incompressible flow inside a toroidal pipe for values of the curvature $\delta$ (ratio between pipe and torus radii) approaching zero, i.e. the limit of a straight pipe. The global neutral stability curve for $10^{-7} \leq \delta \leq ~10^{-2}$ is traced using a continuation algorithm. Two different families of unstable eigenmodes are identified. For curvatures below $1.5 \times 10^{-6}$, the critical Reynolds number ${{Re}}_{cr}$ is proportional to $\delta ^{-1/2}$. Hence, the critical Dean number is constant, ${{De}}_{cr} = 2\,{{Re}}_{cr}\,\sqrt {\delta } \approx 113$. This behaviour confirms that the Hagen–Poiseuille flow is stable to infinitesimal perturbations for any Reynolds number and suggests that a continuous transition from the curved to the straight pipe takes place as far as it regards the stability properties. For low values of the curvature, an approximate self-similar solution for the steady base flow can be obtained at a fixed Dean number. Exploiting the proposed semi-analytic scaling in the stability analysis provides satisfactory results.
We use video footage of a water-tunnel experiment to construct a 2-D reduced-order model of the flapping dynamics of an inverted flag in uniform flow. The model is obtained as the reduced dynamics on a 2-D attracting spectral submanifold (SSM) that emanates from the two slowest modes of the unstable fixed point of the flag. Beyond an unstable fixed point and a limit cycle expected from observations, our SSM-reduced model also confirms the existence of two unstable fixed points for the flag, which were found by previous studies. Importantly, the model correctly reconstructs the dynamics from a small number of general trajectories and no further information on the system. In the chaotic flapping regime, we construct a 4-D SSM-reduced model that captures the system's chaotic attractor.
During the 2018 K$\unicode{x012B}$lauea lower East Rift Zone eruption, lava from 24 fissures inundated more than 8000 acres of land, destroying more than 700 structures over three months. Eruptive activity eventually focused at a single vent characterized by a continuously fed lava pond that was drained by a narrow spillway into a much wider, slower channelized flow. The spillway exhibited intervals of ‘pulsing’ behaviour in which the lava depth and velocity were observed to oscillate on time scales of several minutes. At the time, this was attributed to variations in vesiculation originating at depth. Here, we construct a toy fluid dynamical model of the pond–spillway system, and present an alternative hypothesis in which pulsing is generated at the surface, within this system. We posit that the appearance of pulsing is due to a supercritical Hopf bifurcation driven by an increase in the Reynolds number. Asymptotics for the limit cycle near the bifurcation point are derived with averaging methods and compare favourably with the cycle periodicity. Because oscillations in the pond were not observable directly due to the elevation of the cone rim and an obscuring volcanic plume, we model the observations using a spatially averaged Saint-Venant model of the spillway forced by the pond oscillator. The predicted spillway cycle periodicity and waveforms compare favourably with observations made during the eruption. The unusually well-documented nature of this eruption enables estimation of the viscosity of the erupting lava.
The aeroelasticity of a panel in the presence of a shock is a fundamental issue of great significance in the development of hypersonic vehicles. In practical engineering, cavity pressure emerges as a crucial factor that influences the nonlinear dynamical characteristics of the panel. This study focuses on the aeroelastic bifurcation of a flexible panel subjected to both cavity pressure and oblique shock. To this end, a computational method is devised, coupling a high-fidelity reduced-order model for unsteady aerodynamic loads with nonlinear structural equations. The solution is meticulously tracked by continuous calculations. The obtained results indicate that cavity pressure plays a pivotal role in determining the bifurcation and stability characteristics of the system. First, the system exhibits hysteresis behaviour in response to the ascending and descending dynamic pressures. The evolution of hysteresis behaviour originates from the phenomenon of cusp catastrophe. Second, variations in cavity pressure induce three types of bifurcation phenomena, exhibiting characteristics akin to supercritical Hopf bifurcation, subcritical Hopf bifurcation and saddle-node bifurcation of cycles. The system's response at the critical points of these bifurcations manifests as long-period asymptotic flutter or explosive flutter. Lastly, the evolution of the dynamical system among these three types of bifurcations is an important factor contributing to the discrepancies observed in certain research results. This study enhances the understanding of the nonlinear dynamical behaviour of panel aeroelasticity in complex practical environments and provides new explanations for the discrepancies observed in certain research results.
Snap-through is a buckling instability that allows slender objects, including those in plant and biological systems, to generate rapid motion that would be impossible if they were to use their internal forces exclusively. In microfluidic devices, such as micromechanical switches and pumps, this phenomenon has practical applications for manipulating fluids at small scales. The onset of this elastic instability often drives the surrounding fluid into motion – a process known as snap-induced flow. To analyse the complex dynamics resulting from the interaction between a sheet and a fluid, we develop a prototypical model of a thin sheet that is compressed between the two sides of a closed channel filled with an inviscid fluid. At first, the sheet bends towards the upstream direction and the system is at rest. However, once the pressure difference in the channel exceeds a critical value, the sheet snaps to the opposite side and drives the fluid dynamics. We formulate an analytical model that combines the elasticity of thin sheets with the hydrodynamics of inviscid fluids to explore how external pressure differences, material properties and geometric factors influence the system's behaviour. To analyse the early stages of the evolution, we perform a linear stability analysis and obtain the growth rate and the critical pressure difference for the onset of the instability. A weakly nonlinear analysis suggests that the system can exhibit a pressure spike in the vicinity of the inverted configuration.
Using experiments and a depth-averaged numerical model, we study instabilities of two-phase flows in a Hele-Shaw channel with an elastic upper boundary and a non-uniform cross-section prescribed by initial collapse. Experimentally, we find increasingly complex and unsteady modes of air-finger propagation as the dimensionless bubble speed $Ca$ and level of collapse are increased, including pointed fingers, indented fingers and the feathered modes first identified by Cuttle et al. (J. Fluid Mech., vol. 886, 2020, A20). By introducing a measure of the viscous contribution to finger propagation, we identify a $Ca$ threshold beyond which viscous forces are superseded by elastic effects. Quantitative prediction of this transition between ‘viscous’ and ‘elastic’ reopening regimes across levels of collapse establishes the fidelity of the numerical model. In the viscous regime, we recover the non-monotonic dependence on $Ca$ of the finger pressure, which is characteristic of benchtop models of airway reopening. To explore the elastic regime numerically, we extend the depth-averaged model introduced by Fontana et al. (J. Fluid Mech., vol. 916, 2021, A27) to include an artificial disjoining pressure that prevents the unphysical self-intersection of the interface. Using time simulations, we capture for the first time the majority of experimental finger dynamics, including feathered modes. We show that these disordered states evolve continually, with no evidence of convergence to steady or periodic states. We find that the steady bifurcation structure satisfactorily predicts the bubble pressure as a function of $Ca$, but that it does not provide sufficient information to predict the transition to unsteady dynamics that appears strongly nonlinear.
In the present paper, the sloshing flow in a cuboid tank forced to oscillate horizontally is investigated with both experimental and numerical approaches. The filling depth chosen is $h/L=0.35$ (with h the water depth and L the tank height), which is close to the critical depth. According to Tadjbakhsh & Keller (J. Fluid Mech., vol. 8, issue 3, 1960, pp. 442–451), as the depth passes through this critical value the response of the resonant sloshing dynamics changes from ‘hard spring’ to ‘soft spring’. The experimental tank has a thickness of $0.1L$, reducing three-dimensional effects. High-resolution digital camera and capacitance wave probes are used for time recording of the surface elevation. By varying the oscillation period and the amplitude of the motion imposed on the tank, different scenarios are identified in terms of free-surface evolution. Periodic and quasi-periodic regimes are found in most of the frequencies analysed but, among these, sub-harmonic regimes are also identified. Chaotic energetic regimes are found with motions of greater amplitude. Typical tools of dynamical systems, such as Fourier spectra and phase maps, are used for the regime identification, while the Hilbert–Huang transform is used for further insight into doubling-frequency and tripling-period bifurcations. For the numerical investigation, an advanced and well-established smoothed particle hydrodynamics method is used to aid the understanding of the physical phenomena involved and to extend the range of frequencies investigated experimentally.
We conducted a systematic numerical investigation of spherical, prolate and oblate particles in an inertial shear flow between two parallel walls, using smoothed particle hydrodynamics (SPH). It was previously shown that above a critical Reynolds number, spherical particles experience a supercritical pitchfork bifurcation of the equilibrium position in shear flow between two parallel walls, namely that the central equilibrium position becomes unstable, leading to the emergence of two new off-centre stable positions (Fox et al., J. Fluid Mech., vol. 915, 2021). This phenomenon was unexpected given the symmetry of the system. In addition to confirming this finding, we found, surprisingly, that ellipsoidal particles can also return to the centre position from the off-centre positions when the particle Reynolds number is further increased, while spherical particles become unstable under this increased Reynolds number. By utilizing both SPH and the finite element method for flow visualization, we explained the underlining mechanism of this reverse of bifurcation by altered streamwise vorticity and symmetry breaking of pressure. Furthermore, we expanded our investigation to include asymmetric particles, a novel aspect that had not been previously modelled, and we observed similar trends in particle dynamics for both symmetric and asymmetric ellipsoidal particles. While further validation through laboratory experiments is necessary, our research paves the road for development of new focusing and separation methods for shaped particles.
Solid particles trapped in an acoustic standing wave have been observed to undergo propulsion. This phenomenon has been attributed to the generation of a steady streaming flow, with a reversal in the propulsion direction at a distinct frequency. We explain the mechanism underlying this reversal by considering the canonical problem of a sphere executing oscillatory rotation in an unbounded fluid that undergoes rectilinear oscillation; these two oscillations occur at identical frequency but with an arbitrary phase difference. Two distinct bifurcations in the flow field occur: (1) a stagnation point first forms with increasing frequency, which (2) splits into a saddle node and a vortex centre. Reversal in the propulsion direction is driven by reversal in the flow far from the sphere, which coincides with the second bifurcation. This flow is identified with that of a Stokeslet whose strength is the net force exerted on the particle, which has implications for studying the flow field around particles of non-spherical geometries and for modelling suspensions of particles in acoustic fields.
The cubic interactions in a discrete system of four weakly nonlinear waves propagating in a conservative dispersive medium are studied. By reducing the problem to a single ordinary differential equation governing the motion of a classical particle in a quartic potential, the complete explicit branches of solutions are presented, either steady, periodic, breather or pump, thus recovering or generalizing some already published results in hydrodynamics, nonlinear optics and plasma physics, and presenting some new ones. Various stability criteria are also formulated for steady equilibria. Theory is applied to deep-water gravity waves for which models of isolated quartets are described, including bidirectional standing waves and quadri-directional travelling waves, steady or not, resonant or not.
The squirmer is a popular model to analyse the fluid mechanics of a self-propelled object, such as a micro-organism. We demonstrate that some fore–aft symmetric squirmers can spontaneously self-propel above a critical Reynolds number. Specifically, we numerically study the effects of inertia on spherical squirmers characterised by an axially and fore–aft symmetric ‘quadrupolar’ distribution of surface-slip velocity; under creeping-flow conditions, such squirmers generate a pure stresslet flow, the stresslet sign classifying the squirmer as either a ‘pusher’ or ‘puller’. Assuming axial symmetry, and over the examined range of the Reynolds number $Re$ (defined based upon the magnitude of the quadrupolar squirming), we find that spontaneous symmetry breaking occurs in the puller case above $Re \approx 14.3$, with steady swimming emerging from that threshold consistently with a supercritical pitchfork bifurcation and with the swimming speed growing monotonically with $Re$.
This study extends our previous work (McCloughan & Suslov, J. Fluid Mech., vol. 887, 2020, A23), where the existence of a saddle-node bifurcation of steady axisymmetric electrolyte flows driven by the Lorentz force in a shallow annular domain was first reported. Here we perform further weakly nonlinear analysis over a wider range of the governing parameters to demonstrate that the previously reported saddle-node bifurcation is a local feature of a global fold catastrophe, which, in turn, is a part of cusp catastrophe occurring as the thickness of the fluid layer increases. The amplitude equation characterising multiple flow solutions in the finite vicinity of catastrophe points is derived. The sensitivity of its coefficients and solutions to the distance from the catastrophe points is assessed demonstrating the robustness of the used analytical procedure. The asymptotic flow solution past the catastrophe point is subsequently obtained and its topology is explored confirming the existence of the secondary circulation in the bulk of flow (two-tori background flow structure). The latter is argued to lead to the appearance of experimentally observable vortices on the fluid surface. The rigorous justification of this conjecture is to be given in Part 2 of the study.
We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near $\mu =0$ in the nonresonance case and in the resonance case $p:q$ where $q$ is not an integer multiple of $p$. Furthermore, we obtain the multiplicity of bichromatic wave trains in $p:q$ resonance where $q$ is an integer multiple of $p$, based on the singular theorem.