We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We initiate the study of computable presentations of real and complex C*-algebras under the program of effective metric structure theory. With the group situation as a model, we develop corresponding notions of recursive presentations and word problems for C*-algebras, and show some analogous results hold in this setting. Famously, every finitely generated group with a computable presentation is computably categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every finite-dimensional C*-algebra is computably categorical.
We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by
$H(F)$
the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in
$H(F)$
, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in
$H(F)$
using computable
$\Sigma _1$
formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán. This proof allows the possibility that the elements of F are represented by tuples in
$H(F)$
of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of F represented by triples in
$H(F)$
. Looking at what was used to arrive at this parameter-free interpretation of F in
$H(F)$
, we give general conditions sufficient to eliminate parameters from interpretations.
Every countable structure has a sentence of the infinitary logic
$\mathcal {L}_{\omega _1 \omega }$
which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs where possible, followed by a survey of recent advances.
The main objective of this paper is the following two results. (1) There exists a computable bi-orderable group that does not have a computable bi-ordering; (2) there exists a bi-orderable, two-generated computably presented solvable group with undecidable word problem. Both of the groups can be found among two-generated solvable groups of derived length $3$.
(1) [a]nswers a question posed by Downey and Kurtz; (2) answers a question posed by Bludov and Glass in Kourovka Notebook.
One of the technical tools used to obtain the main results is a computational extension of an embedding theorem of B. Neumann that was studied by the author earlier. In this paper we also compliment that result and derive new corollaries that might be of independent interest.
Our main result is that there exist structures which cannot be computably recovered from their tree of tuples. This implies that there are structures with no computable copies which nevertheless cannot code any information in a natural/functorial way.
Downey and Kurtz asked whether every orderable computable group is classically isomorphic to a group with a computable ordering. By an order on a group, one might mean either a left-order or a bi-order. We answer their question for left-orderable groups by showing that there is a computable left-orderable group which is not classically isomorphic to a computable group with a computable left-order. The case of bi-orderable groups is left open.
We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is ${\rm{\Delta }}_\alpha ^0 $-complete for some α. To prove this, we extend Montalbán’s η-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinal α and a cone in the Turing degrees such that the exact complexity of computing an isomorphism between the given structure and another copy ${\cal B}$ in the cone is a c.e. degree in ${\rm{\Delta }}_\alpha ^0\left( {\cal B} \right)$. In each of our theorems the cone in question is clearly described in the beginning of the proof, so it is easy to see how the theorems can be viewed as general theorems with certain effectiveness conditions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.