We study some geometric properties related to the set
$${{\Pi }_{X}}\,:=\left\{ \left( x,\,{{x}^{*}} \right)\,\in \,{{\text{S}}_{X}}\,\times \,{{\text{S}}_{{{X}^{*}}}}\,:\,{{x}^{*}}\left( x \right)\,=\,1 \right\}$$
obtaining two characterizations of Hilbert spaces in the category of Banach spaces. We also compute the distance of a generic element $\left( h,\,k \right)\,\in \,H\,{{\oplus }_{2}}\,H$ to ${{\Pi }_{H}}$ for $H$ a Hilbert space.