We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the concept of extrinsic catenary in the hyperbolic plane. Working in the hyperboloid model, we define an extrinsic catenary as the shape of a curve hanging under its weight as seen from the ambient space. In other words, an extrinsic catenary is a critical point of the potential functional, where we calculate the potential with the extrinsic distance to a fixed reference plane in the ambient Lorentzian space. We then characterize extrinsic catenaries in terms of their curvature and as a solution to a prescribed curvature problem involving certain vector fields. In addition, we prove that the generating curve of any minimal surface of revolution in the hyperbolic space is an extrinsic catenary with respect to an appropriate reference plane. Finally, we prove that one of the families of extrinsic catenaries admits an intrinsic characterization if we replace the extrinsic distance with the intrinsic length of horocycles orthogonal to a reference geodesic.
The total mean curvature functional for submanifolds into the Riemannian product space $\mathbb{S}^n\times\mathbb{R}$ is considered and its first variational formula is presented. Later on, two second-order differential operators are defined and a nice integral inequality relating both of them is proved. Finally, we prove our main result: an integral inequality for closed stationary $\mathcal{H}$-surfaces in $\mathbb{S}^n\times\mathbb{R}$, characterizing the cases where the equality is attained.
This chapter is dedicated to the very special class of constant mean curvature surfaces. A classical result by Thomsen characterizes isothermic Willmore surfaces in 3-space as minimal surfaces in some 3-dimensional space-form. Constant mean curvature surfaces in 3-dimensional space-forms are examples of constrained Willmore surfaces, characterized by the existence of some conserved quantity. Both constrained Willmore spectral deformation and Bäcklund transformation prove to preserve the existence of such a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, in the latter case. The class of constant mean curvature surfaces in 3-dimensional space-forms lies, in this way, at the intersection of several integrable geometries, with classical transformations of its own, as well as transformations as a class of constrained Willmore surfaces, together with transformations as a subclass of the class of isothermic surfaces, as we explore in this chapter. Constrained Willmore transformation proves to be unifying to this rich transformation theory, as we shall conclude.
From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts.
In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and embedded minimal surfaces in $\mathbb{R}^{n}$ and in minimally convex domains of $\mathbb{R}^{n}$, results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.
The classical result of Nevanlinna states that two nonconstantmeromorphic functions on the complex plane having the same images for five distinct values must be identically equal to each other. In this paper, we give a similar uniqueness theorem for the Gauss maps of complete minimal surfaces in Euclidean four-space.
If the closed wire frame of a soap film having the shape of a Möbius strip is pulled apart and gradually deformed into a planar circle, the soap film transforms into a two-sided orientable surface. In the presence of a finite-time twist singularity, which changes the linking number of the film's Plateau border and the centreline of the wire, the topological transformation involves the collapse of the film toward the wire. In contrast to experimental studies of this process reported elsewhere, we use a numerical approach based on the immersed boundary method, which treats the soap film as a massless membrane in a Navier-Stokes fluid. In addition to known effects, we discover vibrating motions of the film arising after the topological change is completed, similar to the vibration of a circular membrane.
This paper introduces a two-stage model for multi-channel image segmentation, which is motivated by minimal surface theory. Indeed, in the first stage, we acquire a smooth solution u from a convex variational model related to minimal surface property and different data fidelity terms are considered. This minimization problem is solved efficiently by the classical primal-dual approach. In the second stage, we adopt thresholding to segment the smoothed image u. Here, instead of using K-means to determine the thresholds, we propose a more stable hill-climbing procedure to locate the peaks on the 3D histogram of u as thresholds, in the meantime, this algorithm can also detect the number of segments. Finally, numerical results demonstrate that the proposed method is very robust against noise and superior to other image segmentation approaches.
We elucidate the geometric background of function-theoretic properties for the Gauss maps of several classes of immersed surfaces in three-dimensional space forms, for example, minimal surfaces in Euclidean three-space, improper affine spheres in the affine three-space, and constant mean curvature one surfaces and flat surfaces in hyperbolic three-space. To achieve this purpose, we prove an optimal curvature bound for a specified conformal metric on an open Riemann surface and give some applications. We also provide unicity theorems for the Gauss maps of these classes of surfaces.
The normalized eigenvalues ${{\Lambda }_{i}}\left( M,\,g \right)$ of the Laplace–Beltrami operator can be considered as functionals on the space of all Riemannian metrics $g$ on a fixed surface $M$. In recent papers several explicit examples of extremal metrics were provided. These metrics are induced by minimal immersions of surfaces in ${{\mathbb{S}}^{3}}$ or ${{\mathbb{S}}^{4}}$. In this paper a family of extremal metrics induced by minimal immersions in ${{\mathbb{S}}^{5}}$ is investigated.
Complete minimal immersions satisfying the Omori–Yau maximum principle are investigated. It is shown that the limit set of a proper immersion into a convex set must be the whole boundary of the convex set. In case of a nonproper and nonplanar immersion we prove that the convex hull of the immersion is a half-space or ℝ3.
In this paper, we shall study the Dirichlet problem for the minimal surfaces equation. We prove some results about the boundary behaviour of a solution of this problem. We describe the behaviour of a non-converging sequence of solutions in term of lines of divergence in the domain. Using this second result, we build some solutions of the Dirichlet problem on unbounded domain. We then give a new proof of the result of Cosín and Ros concerning the Plateau problem at infinity for horizontal ends.
We prove that given a convex Jordan curve $\varGamma\subset\{x_3=0\}$, the space of properly embedded minimal annuli in the
half-space $\{x_3\geq0\}$, with boundary $\varGamma$ is diffeomorphic to the interval $[0,\infty)$. Moreover, for a fixed
positive number $a$, the exterior Plateau problem that consists of finding a properly embedded minimal annulus in the
upper half-space, with finite total curvature, boundary $\varGamma$ and a catenoid type end with logarithmic growth $a$ has
exactly zero, one or two solutions, each one with a different stability character for the Jacobi operator.
A minimal surface is a surface with vanishing mean curvature. In this paper we study self θ -congruent minimal surfaces, that is, surfaces which are congruent to their θ-associates under rigid motions in R3 for 0 ≤ θ < 2π. We give necessary and sufficient conditions in terms of its Weierstrass pair for a surface to be self θ-congruent. We also construct some examples and give an application.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.