We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for every finite set of prime numbers $S$, there are at most finitely many singular moduli that are $S$-units. The key new ingredient is that for every prime number $p$, singular moduli are $p$-adically disperse. We prove analogous results for the Weber modular functions, the $\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
We investigate two kinds of Fricke families, those consisting of Fricke functions and those consisting of Siegel functions. In terms of their special values we then generate ray class fields of imaginary quadratic fields over the Hilbert class fields, which are related to the Lang–Schertz conjecture.
We show that a weakly holomorphic modular function can be written as a sum of modular units of higher level. Furthermore, we find a necessary and sufficient condition for a meromorphic Siegel modular function of degree g to have neither a zero nor a pole on a certain subset of the Siegel upper half-space .
Let , where η(τ) is the Dedekind eta function. We show that if τ0 is an imaginary quadratic argument and m is an odd integer, then is an algebraic integer dividing This is a generalization of a result of Berndt, Chan and Zhang. On the other hand, when K is an imaginary quadratic field and θK is an element of K with Im(θK) > 0 which generates the ring of integers of K over ℤ, we find a sufficient condition on m which ensures that is a unit.
A new infinite product ${{t}_{n}}$ was introduced by S. Ramanujan on the last page of his third notebook. In this paper, we prove Ramanujan’s assertions about ${{t}_{n}}$ by establishing new connections between the modular $j$-invariant and Ramanujan’s cubic theory of elliptic functions to alternative bases. We also show that for certain integers $n$, ${{t}_{n}}$ generates the Hilbert class field of $\mathbb{Q}\left( \sqrt{-n} \right)$. This shows that ${{t}_{n}}$ is a new class invariant according to H. Weber’s definition of class invariants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.