We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We solve the non-discounted, finite-horizon optimal stopping problem of a Gauss–Markov bridge by using a time-space transformation approach. The associated optimal stopping boundary is proved to be Lipschitz continuous on any closed interval that excludes the horizon, and it is characterized by the unique solution of an integral equation. A Picard iteration algorithm is discussed and implemented to exemplify the numerical computation and geometry of the optimal stopping boundary for some illustrative cases.
We study a signaling game between an employer and a potential employee, where the employee has private information regarding their production capacity. At the initial stage, the employee communicates a salary claim, after which the true production capacity is gradually revealed to the employer as the unknown drift of a Brownian motion representing the revenues generated by the employee. Subsequently, the employer has the possibility to choose a time to fire the employee in case the estimated production capacity falls short of the salary. In this setup, we use filtering and optimal stopping theory to derive an equilibrium in which the employee provides a randomized salary claim and the employer uses a threshold strategy in terms of the conditional probability for the high production capacity. The analysis is robust in the sense that various extensions of the basic model can be solved using the same methodology, including cases with positive firing costs, incomplete information about an individual’s own type, as well as an additional interview phase.
We investigate an optimal stopping problem for the expected value of a discounted payoff on a regime-switching geometric Brownian motion under two constraints on the possible stopping times: only at exogenous random times, and only during a specific regime. The main objectives are to show that an optimal stopping time exists as a threshold type and to derive expressions for the value functions and the optimal threshold. To this end, we solve the corresponding variational inequality and show that its solution coincides with the value functions. Some numerical results are also introduced. Furthermore, we investigate some asymptotic behaviors.
We extend the classical setting of an optimal stopping problem under full information to include problems with an unknown state. The framework allows the unknown state to influence (i) the drift of the underlying process, (ii) the payoff functions, and (iii) the distribution of the time horizon. Since the stopper is assumed to observe the underlying process and the random horizon, this is a two-source learning problem. Assigning a prior distribution for the unknown state, standard filtering theory can be employed to embed the problem in a Markovian framework with one additional state variable representing the posterior of the unknown state. We provide a convenient formulation of this Markovian problem, based on a measure change technique that decouples the underlying process from the new state variable. Moreover, we show by means of several novel examples that this reduced formulation can be used to solve problems explicitly.
Given a spectrally negative Lévy process, we predict, in an
$L_1$
sense, the last passage time of the process below zero before an independent exponential time. This optimal prediction problem generalises [2], where the infinite-horizon problem is solved. Using a similar argument as that in [24], we show that this optimal prediction problem is equivalent to solving an optimal prediction problem in a finite-horizon setting. Surprisingly (unlike the infinite-horizon problem), an optimal stopping time is based on a curve that is killed at the moment the mean of the exponential time is reached. That is, an optimal stopping time is the first time the process crosses above a non-negative, continuous, and non-increasing curve depending on time. This curve and the value function are characterised as a solution of a system of nonlinear integral equations which can be understood as a generalisation of the free boundary equations (see e.g. [21, Chapter IV.14.1]) in the presence of jumps. As an example, we numerically calculate this curve in the Brownian motion case and for a compound Poisson process with exponential-sized jumps perturbed by a Brownian motion.
In optimal stopping problems, decision makers are assumed to search randomly to learn the utility of alternatives; in contrast, in one-shot multi-attribute utility optimization, decision makers are assumed to have perfect knowledge of utilities. We point out that these two contexts represent the boundaries of a continuum, of which the middle remains uncharted: How should people search intelligently when they possess imperfect information about the alternatives? We assume that decision makers first estimate the utility of each available alternative and then search the alternatives in order of their estimated utility until expected benefits are outweighed by search costs. We considered three well-known models for estimating utility: (i) a linear multi-attribute model, (ii) equal weighting of attributes, and (iii) a single-attribute heuristic. We used 12 real-world decision problems, ranging from consumer choice to industrial experimentation, to measure the performance of the three models. The full model (i) performed best on average but its simplifications (ii and iii) also had regions of superior performance. We explain the results by analyzing the impact of the models’ utility order and estimation error.
Undersampling biases are common in the optimal stopping literature, especiallyfor economic full choice problems. Among these kinds of number-based studies,the moments of the distribution of values that generates the options (i.e., thegenerating distribution) seem to influence participants’ sampling rate.However, a recent study reported an oversampling bias on a different kind ofoptimal stopping task: where participants chose potential romantic partners fromimages of faces (Furl et al., 2019). The authors hypothesised that thisoversampling bias might be specific to mate choice. We preregistered thishypothesis and so, here, we test whether sampling rates across differentimage-based decision-making domains a) reflect different over- or undersamplingbiases, or b) depend on the moments of the generating distributions (as shownfor economic number-based tasks). In two studies (N = 208 andN = 96), we found evidence against the preregisteredhypothesis. Participants oversampled to the same degree across domains (comparedto a Bayesian ideal observer model), while their sampling rates depended on thegenerating distribution mean and skewness in a similar way as number-basedparadigms. Moreover, optimality model sampling to some extent depended on thethe skewness of the generating distribution in a similar way to participants. Weconclude that oversampling is not instigated by the mate choice domain and thatsampling rate in image-based paradigms, like number-based paradigms, depends onthe generating distribution.
We introduce a variant of Shepp’s classical urn problem in which the optimal stopper does not know whether sampling from the urn is done with or without replacement. By considering the problem’s continuous-time analog, we provide bounds on the value function and, in the case of a balanced urn (with an equal number of each ball type), an explicit solution is found. Surprisingly, the optimal strategy for the balanced urn is the same as in the classical urn problem. However, the expected value upon stopping is lower due to the additional uncertainty present.
In this paper we study a class of optimal stopping problems under g-expectation, that is, the cost function is described by the solution of backward stochastic differential equations (BSDEs). Primarily, we assume that the reward process is
$L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$
-integrable with
$\mu>\mu_0$
for some critical value
$\mu_0$
. This integrability is weaker than
$L^p$
-integrability for any
$p>1$
, so it covers a comparatively wide class of optimal stopping problems. To reach our goal, we introduce a class of reflected backward stochastic differential equations (RBSDEs) with
$L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$
-integrable parameters. We prove the existence, uniqueness, and comparison theorem for these RBSDEs under Lipschitz-type assumptions on the coefficients. This allows us to characterize the value function of our optimal stopping problem as the unique solution of such RBSDEs.
In this paper, we study the optimal multiple stopping problem under the filtration-consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions, rather than a process that is right-continuous with left limits. We first construct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
The Chow–Robbins game is a classical, still partly unsolved, stopping problem introduced by Chow and Robbins in 1965. You repeatedly toss a fair coin. After each toss, you decide whether you take the fraction of heads up to now as a payoff, otherwise you continue. As a more general stopping problem this reads
$V(n,x) = \sup_{\tau }\mathbb{E} \left [ \frac{x + S_\tau}{n+\tau}\right]$
, where S is a random walk. We give a tight upper bound for V when S has sub-Gaussian increments by using the analogous time-continuous problem with a standard Brownian motion as the driving process. For the Chow–Robbins game we also give a tight lower bound and use these to calculate, on the integers, the complete continuation and the stopping set of the problem for
$n\leq 489\,241$
.
We study the Wiener disorder detection problem where each observation is associated with a positive cost. In this setting, a strategy is a pair consisting of a sequence of observation times and a stopping time corresponding to the declaration of disorder. We characterize the minimal cost of the disorder problem with costly observations as the unique fixed point of a certain jump operator, and we determine the optimal strategy.
Nowadays many financial derivatives, such as American or Bermudan options, are of early exercise type. Often the pricing of early exercise options gives rise to high-dimensional optimal stopping problems, since the dimension corresponds to the number of underlying assets. High-dimensional optimal stopping problems are, however, notoriously difficult to solve due to the well-known curse of dimensionality. In this work, we propose an algorithm for solving such problems, which is based on deep learning and computes, in the context of early exercise option pricing, both approximations of an optimal exercise strategy and the price of the considered option. The proposed algorithm can also be applied to optimal stopping problems that arise in other areas where the underlying stochastic process can be efficiently simulated. We present numerical results for a large number of example problems, which include the pricing of many high-dimensional American and Bermudan options, such as Bermudan max-call options in up to 5000 dimensions. Most of the obtained results are compared to reference values computed by exploiting the specific problem design or, where available, to reference values from the literature. These numerical results suggest that the proposed algorithm is highly effective in the case of many underlyings, in terms of both accuracy and speed.
We consider the optimal prediction problem of stopping a spectrally negative Lévy process as close as possible to a given distance $b \geq 0$ from its ultimate supremum, under a squared-error penalty function. Under some mild conditions, the solution is fully and explicitly characterised in terms of scale functions. We find that the solution has an interesting non-trivial structure: if b is larger than a certain threshold then it is optimal to stop as soon as the difference between the running supremum and the position of the process exceeds a certain level (less than b), while if b is smaller than this threshold then it is optimal to stop immediately (independent of the running supremum and position of the process). We also present some examples.
We consider a fractional Brownian motion with linear drift such that its unknown drift coefficient has a prior normal distribution and construct a sequential test for the hypothesis that the drift is positive versus the alternative that it is negative. We show that the problem of constructing the test reduces to an optimal stopping problem for a standard Brownian motion obtained by a transformation of the fractional Brownian motion. The solution is described as the first exit time from some set, and it is shown that its boundaries satisfy a certain integral equation, which is solved numerically.
In a classical, continuous-time, optimal stopping problem, the agent chooses the best time to stop a stochastic process in order to maximise the expected discounted return. The agent can choose when to stop, and if at any moment they decide to stop, stopping occurs immediately with probability one. However, in many settings this is an idealistic oversimplification. Following Strack and Viefers we consider a modification of the problem in which stopping occurs at a rate which depends on the relative values of stopping and continuing: there are several different solutions depending on how the value of continuing is calculated. Initially we consider the case where stopping opportunities are constrained to be event times of an independent Poisson process. Motivated by the limiting case as the rate of the Poisson process increases to infinity, we also propose a continuous-time formulation of the problem where stopping can occur at any instant.
This paper investigates the random horizon optimal stopping problem for measure-valued piecewise deterministic Markov processes (PDMPs). This is motivated by population dynamics applications, when one wants to monitor some characteristics of the individuals in a small population. The population and its individual characteristics can be represented by a point measure. We first define a PDMP on a space of locally finite measures. Then we define a sequence of random horizon optimal stopping problems for such processes. We prove that the value function of the problems can be obtained by iterating some dynamic programming operator. Finally we prove via a simple counter-example that controlling the whole population is not equivalent to controlling a random lineage.
We study the problem of stopping a Brownian bridge X in order to maximise the expected value of an exponential gain function. The problem was posed by Ernst and Shepp (2015), and was motivated by bond selling with non-negative prices.
Due to the non-linear structure of the exponential gain, we cannot rely on methods used in the literature to find closed-form solutions to other problems involving the Brownian bridge. Instead, we must deal directly with a stopping problem for a time-inhomogeneous diffusion. We develop techniques based on pathwise properties of the Brownian bridge and martingale methods of optimal stopping theory, which allow us to find the optimal stopping rule and to show the regularity of the value function.
We present a discrete-type approximation scheme to solve continuous-time optimal stopping problems based on fully non-Markovian continuous processes adapted to the Brownian motion filtration. The approximations satisfy suitable variational inequalities which allow us to construct
$\varepsilon$
-optimal stopping times and optimal values in full generality. Explicit rates of convergence are presented for optimal values based on reward functionals of path-dependent stochastic differential equations driven by fractional Brownian motion. In particular, the methodology allows us to design concrete Monte Carlo schemes for non-Markovian optimal stopping time problems as demonstrated in the companion paper by Bezerra et al.