We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Phenological studies for Cuban bulrush [Oxycaryum cubense (Poepp. & Kunth) Lye] have been limited to the monocephalous form in Lake Columbus (Mississippi). Accordingly, there is little available information on potential phenological differences among O. cubense forms (monocephalous vs. polycephalous) and populations in other geographic locations in the United States. Therefore, seasonal patterns of biomass and starch allocation in O. cubense were quantified from two populations in Lake Columbus on the Tennessee-Tombigbee Waterway in Mississippi (monocephalous), two populations from Lake Martin in Louisiana (polycephalous), and two populations from Orange Lake in Florida (polycephalous). Monthly samples of O. cubense inflorescence, emergent, and submersed tissue were harvested from two plots per state from October 2021 to September 2022. During monthly data collection, air temperature and photoperiod were recorded. Starch allocation patterns were similar among all sites, with starch storage being less than 1.5% dry weight for all plant tissues. Biomass was greatest in Lake Columbus (monocephalous; 600.7 g dry weight [DW] m−2) followed by Lake Martin (polycephalous; 392.3 g DW m−2) and Orange Lake (polycephalous; 233.85 g DW m−2). Peak inflorescence biomass occurred in the winter for the Lake Martin and Orange Lake populations and in the summer for the Lake Columbus population. Inflorescence biomass in Lake Columbus had a positive relationship (r2 = 0.53) with warmer air temperatures. Emergent and submersed biomass generally had negative relationships with both photoperiod and temperature (r2 = 0.02 to 0.77) in all sites. Peak biomass was also negatively related to temperature and photoperiod. Results from this study indicate that there are differences in biomass allocation between the two growth forms of O. cubense and that growth can occur at temperatures below freezing. Low temperature tolerance may allow this species to expand its range farther north than previously suspected.
Cichorium glandulosum Boiss. et Huet is a species that has recently spread widely in the autumn crops of northwestern Iran. A study was conducted to evaluate the effect of environmental factors on the germination, emergence, and management of two populations of C. glandulosum. The effects of temperature, photoperiod, NaCl concentration, osmotic potential, seed burial depth, and straw mulch on seed germination and seedling emergence were evaluated for two populations of C. glandulosum from Tabriz and Marand, Iran. The highest germination percentage was observed in the Tabriz (93%) and Marand populations (94%) at 20/10 C (day/night). In both populations, germination was 82% to 93% across a wide range of light/dark periods (8 to 24 h of light). However, germination was significantly reduced (∼70%) under continuous darkness. The osmotic potential required to inhibit 50% of germination was 0.68 MPa for the Tabriz population and 0.62 MPa for the Marand population. The concentration of NaCl required to inhibit 50% of germination was 4.76 dS m−1 for the Tabriz population and 3.81 dS m−1 for the Marand population. The seed burial depths that caused a 50% decrease in emergence for the Tabriz and Marand populations were 1.86 cm and 2.22 cm, respectively. In the Tabriz and Marand populations, the application of 6000 kg ha−1 of straw mulch resulted in a decrease in C. glandulosum emergence to 3% and 10%, respectively. This study’s results inform the conditions required for C. glandulosum germination and establish a theoretical and practical foundation for predicting, preventing, and managing this species using scientific principles.
Although seasonality has been documented for mental disorders, it is unknown whether similar patterns can be observed in employee sickness absence from work due to a wide range of mental disorders with different severity level, and to what extent the rate of change in light exposure plays a role. To address these limitations, we used daily based sickness absence records to examine seasonal patterns in employee sickness absence due to mental disorders.
Methods
We used nationwide diagnosis-specific psychiatric sickness absence claims data from 2006 to 2017 for adult individuals aged 16–67 (n = 636,543 sickness absence episodes) in Finland, a high-latitude country with a profound variation in daylength. The smoothed time-series of the ratio of observed and expected (O/E) daily counts of episodes were estimated, adjusted for variation in all-cause sickness absence rates during the year.
Results
Unipolar depressive disorders peaked in October–November and dipped in July, with similar associations in all forms of depression. Also, anxiety and non-organic sleep disorders peaked in October–November. Anxiety disorders dipped in January–February and in July–August, while non-organic sleep disorders dipped in April–August. Manic episodes reached a peak from March to July and dipped in September–November and in January–February. Seasonality was not dependent on the severity of the depressive disorder.
Conclusions
These results suggest a seasonal variation in sickness absence due to common mental disorders and bipolar disorder, with high peaks in depressive, anxiety and sleep disorders towards the end of the year and a peak in manic episodes starting in spring. Rapid changes in light exposure may contribute to sickness absence due to bipolar disorder. The findings can help clinicians and workplaces prepare for seasonal variations in healthcare needs.
This study is the first report to investigate the relationships between time of parturition and milk productivity and quality, as well as indices related to udder measurements and meteorological variables, in Saanen goats raised under semi-intensive conditions. Goats giving birth in the hours of darkness had higher milk production than those that gave birth in the hours of daylight, while those giving birth during the evening hours had lower somatic cell count (SCC) than those with parturition during the daylight and night hours (P < 0.05). In addition, the time of parturition was associated with rear udder depth, udder circumference, and udder volume traits (P < 0.01). Parity and time of parturition × parity interaction had significant effects on lactation milk yield and lactation length, as well as milk fat, protein, lactose, total solids content and electrical conductivity (P < 0.05 to P < 0.01). The lactation stage, daily milk yield level and parity affected milk SCC (P < 0.05). Ambient temperature and daylight length had strong effects on daily milk yield (P < 0.05). These findings have practical implications for productivity, quality and health promotion efforts aimed at increasing Saanen goat dairy productivity consistently in the face of climatic changes in a semi-intensive system.
Junglerice [Echinochloa colona (L.) Link.] is the most important grass weed species in Australian summer cropping systems. Although it is mainly a spring- and summer-emerging weed species, field observations suggest that E. colona is expanding its seasonality. A common garden experiment was conducted at the University of Queensland farm to examine the effect of planting dates on phenology, growth, and fecundity of eight populations of E. colona. All populations were planted every second month from September to July in 2019 to 2020 and 2020 to 2021. Echinochloa colona took the shortest time (4 to 6 d) to emerge when planted in November or January. However, the November population took the longest number of growing degree days to exhibit panicle emergence. In both years, populations differed in height and leaf, tiller, panicle, and seed production in response to planting times. Plants produced significantly greater biomass for the November planting (123 to 147 g plant−1) followed by the January planting and then the September planting. The March planting produced the lowest biomass. In the first year, the lowest number of seeds (3,500 seeds plant−1) was produced by the March planting; however, in the second year, similar numbers of seeds were produced by the March and July plantings. In the first year, seed production (51,000 seeds plant−1) was greatest for the November planting; however, some populations also produced a similar number of seeds for the January planting. In the second year, significantly greater seed production (111,000 seeds plant−1) was observed for the January planting compared with other planting dates. The aboveground biomass and seed production of E. colona were positively correlated. This study reveals variations among E. colona populations and suggests that although greater emphasis must be placed on controlling spring- and summer-emerging plants, management practices need to be extended throughout the year to control E. colona in southeastern Australia.
The purpose of this study was to investigate the effect of RFRP-3 synchronized with photoperiods on regulating the seasonal reproduction of striped hamsters. The striped hamsters were raised separately under long-day (LD; 16 h light/8 h dark), medium-day (MD; 12 h light/12 h dark) or short-day (SD; 8 h light/16 h dark) conditions for 8 weeks. RFRP-3 and gonadotropin-releasing hormone (GnRH) mRNA levels in the hypothalamus, testis or ovaries in three groups were detected using reverse transcription polymerase chain reaction (RT-PCR). Melatonin (MLT), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in serum were detected using enzyme-linked immunosorbent assay (ELISA). The correlation between RFRP-3 and GnRH mRNA and FSH and LH concentrations was also analyzed. MLT negatively regulated the expression of RFRP-3. Significant differences for RFRP-3 mRNA existed in the three groups, which positively correlated with the GnRH and the FSH and LH concentrations. RFRP-3 mRNA levels in the hypothalamus were significantly higher than those in ovaries or testis. RFRP-3 levels in the hypothalamus were significantly lower in female than in male under SD conditions, while those in ovaries were significantly higher than those in testes under LD conditions. MLT decreased RFRP neuron activity, and RFRP-3 regulated the reproduction of striped hamsters.
The accumulation of nutrients during diapause preparation is crucial because any lack of nutrition will reduce the likelihood of insects completing diapause, thereby decreasing their chances of survival and reproduction. The fall webworm, Hyphantria cunea, diapause as overwintering pupae and their diapause incidence and diapause intensity are regulated by the photoperiod. In this study, we test the hypothesis that photoperiod influences energy reserve accumulation during diapause preparation in fall webworm. We found that the body size and mass, lipid and carbohydrate content of pupae with a short photoperiod during the diapause induction phase were significantly greater than those of pupae with a relatively short photoperiod, and the efficiency of converting digested food and ingested food into body matter was greater in the short-photoperiod diapause-destined larvae than the relatively short-photoperiod diapause-destined larvae. We also observed higher lipase and amylase activities in short-photoperiod diapause-destined larvae relative to the counterparts. However, no obvious difference was found in protein and protease in the pupae with a short photoperiod during the diapause induction phase and short-photoperiod diapause-destined larvae compared with the counterparts. Therefore, we conclude that the energy reserve patterns of diapausing fall webworm pupae are plastic and that short-photoperiod diapause-destined larvae increase their energy reserves by improving their feeding efficiency and increase their lipid and carbohydrate stores by increasing the lipase and amylase activities in the midgut.
Redroot pigweed (Amaranthus retroflexus L.) and slender amaranth (Amaranthus viridis L.) are considered emerging problematic weeds in summer crops in Australia. An outdoor pot experiment was conducted to examine the effects of planting time on two populations of A. retroflexus and A. viridis at the research farm of the University of Queensland, Australia. Both species were planted every month from October to January (2017 to 2018 and 2018 to 2019), and their growth and seed production were recorded. Although both weeds matured at a similar number of growing degree days (GDD), they required a different number of days to complete their life cycles depending on planting date. The growth period was reduced and flowering occurred sooner as both species experienced cooler temperatures and shorter daylight hours. Both species exhibited increased height, biomass, and seed production for the October-sown plants compared with other planting times, and these parameters were reduced by delaying the planting time. The shoot and root biomass of A. retroflexus and A. viridis (averaged over both populations) was reduced by more than 70% and 65%, respectively, when planted in January, in comparison to planting in October. When planted in October, A. retroflexus and A. viridis produced 11,350 and 5,780 seeds plant−1, but these were reduced to 770 and 365 seeds plant−1 for the January planting date, respectively. Although the growth and fecundity of these species were dependent on planting time, these weeds could emerge throughout the late spring to summer growing season (October to March) in southeast Australia and could produce a significant number of seeds. The results showed that when these species emerged in the late spring (October), they grew vigorously and produced more biomass in comparison with the other planting dates. Therefore, any early weed management practice for these species could be beneficial for minimizing the subsequent cost and energy inputs toward their control.
The prediction of the post-diapause emergence is the first step towards a comprehensive decision support system that can contribute to a considerable reduction of pesticide use by forecasting a precise spraying date. The cumulative field emergence can be described as a function of the cumulative development rate. We investigated the impact of seven constant temperatures and five light regimes on post-diapause development in laboratory experiments. Development rate depended significantly on temperature but not on photoperiod. We therefore fit non-linear thermal performance curves, a better and more modern approach over past linear models, to describe the development rate as a function of temperature. The four parameter Brière function was the most suitable and was subsequently applied to temperature data from 36 previous pea fields, where pea moth emergence was measured with pheromone traps in Northern Hesse (Germany). In order to describe the variation in development times between individuals, we fit five nonlinear distribution models to the cumulative development rate as a function of cumulative field emergence. The three parameter Gompertz model was selected as the best fitted model. We validated the model performance with an independent field data set. The model correctly predicted the first moth in the trap and the peak emergence in 81.82% of cases, with an average deviation of only 2.00 and 2.09 days respectively.
Recruitment is related to the occupation of the substrate by fouling organisms. It plays an important role in the maintenance and distribution of benthic populations, being under the influence of biotic and abiotic factors. In the present work, the recruitment of calcareous sponges was monitored over two years in a marina at Todos os Santos Bay, a large bay in the tropical portion of the Brazilian coast. Artificial plates were immersed, being replaced bimonthly and the potential influence of the seawater temperature, photoperiod and precipitation on the number of sponge recruits was tested. The results showed that the number of calcareous sponge recruits had significant temporal variation. Nevertheless, different species showed different patterns over time. Significant differences were observed for Sycon avus, Sycon sp. and Leucandra serrata, and the periods with the highest number of recruits were different amongst them. Sycon bellum, Paraleucilla incomposita, Leucilla sp. and Heteropia glomerosa did not show significant variation in the number of recruits over time. None of the three tested environmental factors were correlated with the number of recruits, but results indicated S. avus recruitment might be driven by seawater temperature. Our results contribute to improve the current knowledge on the dynamics of each species found on the plates and reinforce the general view that the pattern of recruitment varies greatly in Calcarea, even amongst sympatric species.
In semiarid conditions, feed is often scarce and variable with underfeeding being common; these factors can potentially induce fertility reductions in both sexes. Sexually active bucks are able to very efficiently fertilize out-of-season goats, but we do not know whether underfeeding would reduce the ability of bucks to fertilize goats during these periods. Two experiments were conducted to determine (i) testicular size and change of odor intensity of undernourished bucks exposed to long days and (ii) the ability of these bucks to stimulate reproductive activity in seasonally anestrous goats. In experiment 1, bucks (n = 7) were fed 1.5 times the normal maintenance requirements from September to May and formed the well-fed group. Another group of bucks (n = 7) were fed 0.5 times the maintenance requirements and formed the undernourished group. All bucks were subjected to artificially long days from 1 November to 15 January; this period was followed by a natural photoperiod until 30 May. Body weight, scrotal circumference and male odor intensity changes were determined every 2 weeks. In experiment 2, two groups of female goats (n = 26 each) were exposed to well-fed (n = 2) or undernourished bucks (n = 2) on 31 March. Ovulations and pregnancy rates were determined by transrectal ultrasonography. In experiment 1, a treatment by time interaction was detected for BW, scrotal circumference and odor intensity changes (P < 0.001). The BWs of well-fed bucks were greater than those of the undernourished bucks from October to May (P < 0.01), as were the scrotal circumferences from December to March (P < 0.05) and odor intensities from February to May (P < 0.05). In experiment 2, the proportions of females that ovulated at least once (100% v. 96%) or those that were diagnosed as pregnant (85% v. 77%; P > 0.05) did not differ significantly between the goats exposed to well-fed or undernourished bucks. The interval between the introduction of bucks and the onset of estrous behavior was shorter in goats exposed to well-fed bucks compared to the interval for those goats exposed to undernourished bucks (2.5 ± 0.2 v. 9.5 ± 0.6 days; P < 0.05). We conclude that undernourishment reduces the testicular size and odor intensity responses in bucks exposed to long days, but that undernourished bucks are still able to stimulate reproductive activity in seasonally anestrous goats, as is also the case for well-fed bucks.
The effect of month of birth on personality traits was investigated in 595 healthy Japanese. Personality traits were evaluated by the Temperament and Character Inventory (TCI). Statistical analyses were conducted in two steps. Firstly, months of the year were divided according to ambient temperature or photoperiod, and TCI scores were compared between month groups by analysis of covariance (ANCOVA) with age as a covariate. Secondly, multiple regression analysis was performed with TCI scores as dependent variables and ambient temperature and photoperiod at birth month and age as independent variables. Both analyses showed that higher ambient temperature at birth month was related to higher scores of self-directedness and persistence in females. Also, higher ambient temperature at birth month was related to lower body mass index (BMI) in females. These results suggest that month of birth affects self-directedness and persistence in healthy Japanese females, and these effects may be mediated by BMI changes associated with ambient temperature at birth month.
The effect of five photoperiods (0:24, 6:18; 12:12, 18:6, and 24:0 light:dark (L:D)) on the development, reproduction, and survival of the predatory thrips Scolothrips longicornis Priesner fed on the two-spotted spider mite, Tetranychus urticae Koch, was tested under laboratory conditions at 60% RH and 25°C. Development time of almost all immature stages in S. longicornis was the shortest under long day lengths (18:6 and 24:0 L:D). The adult duration of both sexes decreased with increasing light length from 6 to 24 h. The longevity of male and female decreased with increasing light length. Under a 12:12 L:D photoperiod, S. longicornis females had the longest oviposition period and longevity, highest net reproductive rate (R0 = 15.37), intrinsic rate of natural increase (r = 0.141), and finite rate of increase (λ = 1.151). Life table parameters showed a significant difference with various photoperiods. The consequences of the present research demonstrated that a 12:12 L:D photoperiod is the most favorable for the reproduction and development of S. longicornis fed on T. urticae, and that for mas rearing for augmentative biological control programs, would be the ideal photoperiod to maximize production.
This research communication addresses the hypothesis that in dual-purpose goats, exposure to 1 h of extra-light given from 16 to 17 h after dawn (pulse of light) in winter stimulates milk yield. One group of goats was maintained under natural short photoperiod (natural day; ND (n = 7)). Another group of lactating females was submitted to an artificial long-day photoperiod consisting of 16 h light and 8 h darkness (long days; LD (n = 7)). A third group of females received one single hour of extra-light 16 h after the fixed dawn (pulse of light; PL (n = 6)). Goats from LD and PL yielded 30% more milk than goats from ND. Mean percentages of fat, protein and lactose contents in milk did not differ between the 3 groups at any stage of lactation, but these components in grams/day were higher in goats from PL than in the others two groups within the first 45 d of lactation. In conclusion, dual-purpose lactating goats that started their lactation during natural short days, the daily exposition to a 1-h pulse of light is sufficient to stimulate milk yield compared to females maintained under natural short photoperiod.
The intensive production system for broiler chicken is characterised by the provision of a suitable micro-climatic condition such as temperature, airflow, relative humidity and light for proper bird's management which always, together with appropriate feeding and nutrition, favours the full growth and production potentials of the birds. Lighting, amongst other factors, is a potent and critical micro-climatic component in broiler houses as it influences many behavioural, physiological and metabolic processes in birds. To optimise the intensive system for broiler production, various lighting programmes (regarding light duration and its distribution, light colour/wavelength and light intensity) have been explored. This review compares the effects of different elements of lighting regimen on the growth performance, health, and welfare and carcass characteristics of broilers. Considering this, various degrees of intermittent photo-period (i.e. mixing photo- and scoto- periods within 24 hours) rather than one continuous photoperiod have been proven to significantly improve broilers’ weight gain by 3.4-5.8%, feed to gain ratio up to 7.3%, mobility up to 46.5%, decrease mortality rate ranging between 0.43% and 0.72%, and finally, increase carcass yield. Short wavelength lights and light intensity of ≥5 lux after the initial brooding period are said to stimulate birds’ metabolism and growth thereby, enhancing the production system. In conclusion, the lighting programme, apart from improving broiler productivity, could reduce cost expended on energy in an intensive production system.
Environmental characteristics (for example, temperature, photoperiod) as seasonal cues can affect the offspring sex ratio and reproductive tactics of many hymenopteran insects. Leptocybe invasa Fisher & La Salle is the most critical invasive insect pest of Eucalyptus spp. in the world and displays thelytokous reproduction. In the current study, we studied the effects of temperature and photoperiod on offspring sex ratio and reproductive tactics in L. invasa. Results show that sex ratio (female: male) of L. invasa was under 15, 25 and 35 °C with both L 12: D 12 and L 16: D 8, and cold and thermal acclimation were 74.5:1, 71.0:1, 59.0:0, 17.3:1, 53.0:0, 64.0:0, 47.0:1 and 56.0:0, respectively, which was highly significantly female biased and with no significant difference due to temperature or photoperiod. Offspring virgin females oviposited and induced the bump-shaped galls on plants under the same conditions as described above. Constant temperature, photoperiod and their interaction, and cold and thermal acclimation had no significant effect on the infestation rates of Eucalyptus branches induced by offspring virgin females. Thus, temperature, photoperiod and cold and thermal acclimation did not influence female-biased sex ratio and tactics with thelytokous reproduction of offspring females in L. invasa.
The Deleted in AZoospermia (DAZ) gene family regulates the development, maturation and maintenance of germ cells and spermatogenesis in mammals. The DAZ family consists of two autosomal genes, Boule and Dazl (Daz-like), and the Daz gene on chromosome Y. The aim of this study was to analyze the localization of DAZL and BOULE during testicular ontogeny of the seasonal-breeding Syrian hamster, Mesocricetus auratus. We also evaluated the testicular expression of DAZ family genes under short- or long-photoperiod conditions. In the pre-pubertal and adult testis, DAZL protein was found mainly in spermatogonia. BOULE was found in the spermatogonia from 20 days of age and during the pre-pubertal and adult period it was also detected in spermatocytes and round spermatids. DAZL and BOULE expression in spermatogonia was strictly nuclear only in 20-day-old hamsters. We also detected the novel mRNA and protein expression of BOULE in Leydig cells. In adult hamsters, Dazl expression was increased in regressed testis compared with non-regressed testis and DAZL protein expression was restricted to primary spermatocytes in regressed testis. These results show that DAZL and BOULE are expressed in spermatogonia at early stages in the Syrian hamster, then both proteins translocate to the cytoplasm when meiosis starts. In the adult regressed testis, the absence of DAZL in spermatogonia might be related to the decrease in germ cell number, suggesting that DAZ gene family expression is involved in changes in seminiferous epithelium during photoregression.
Increasing evidence has demonstrated that the environmental conditions experienced by parents can shape offspring phenotypes. Here, we examined the effects of the photoperiod and temperature experienced by parents on the incidence of diapause in their progeny in the cabbage beetle, Colaphellus bowringi, using three experiments. The first experiment examined parental diapause incidence under different photoperiods at 25°C and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. The results revealed that the incidence of diapause among progeny was exactly opposite to that of their parents, i.e., higher parental diapause incidence led to lower progeny diapause incidence, showing a negative relationship in diapause incidence between the parental generation and the progeny generation. The incidence of diapause among progeny produced by diapausing parents was higher than that in progeny produced by non-diapausing parents. The second experiment examined parental diapause incidence at different temperatures under LD 12:12 and the incidence of diapause in progeny from both non-diapausing and diapausing parents under the same rearing conditions. Similarly, the incidence of diapause in progeny was also opposite to that of their parents. However, the incidence of diapause in progeny produced by non-diapausing parents was different from that in progeny produced by diapausing parents. In the third experiment, naturally diapausing adults were maintained at a constant temperature of 9, 28°C or the mean daily summer temperature of 27.84°C under continuous darkness for 3 months of dormancy. After dormancy, the progeny of these post-diapause parents were reared under different photoperiods at 25°C. The results showed that the incidence of diapause among progeny was higher when their parents experienced high temperatures than when they experienced low temperatures. All results demonstrate that the photoperiod and temperature experienced by parents may significantly affect the diapause incidence among progeny.
Temporal variations over short and medium time scales play an important role in fish assemblage dynamics, but have been poorly investigated in tropical estuaries. This study evaluates the hypothesis that fishes co-occurring on a tidal mudflat have different patterns of temporal segregation at short- and medium-term scales that optimize resource use and habitat partitioning. A total of 6222 individuals and 66 fish species were caught during different hours covering the entire 24 h cycle, tidal regimes and the wet and dry seasons. Biomass and species richness, and to a lesser extent CPUE and evenness, showed statistically significant interactions across short- and medium-term scales. Biomass was higher during the dry season and its oscillation along tidal cycles revealed distinct patterns over the photoperiod in each season. A similar complex pattern was also observed for species richness, which showed distinct temporal patterns between high and low tides over the photoperiod in each season. Overall, shorter-term variations on fish assemblage attributes were correlated mainly with photoperiod and, to a lesser extent, tidal regime. Medium-term variations in fish abundance and species richness, in contrast, could result from seasonality in recruitment patterns and higher availability of allochthonous food resources during the wet period.
Efforts to screen and mass-rear insects and diseases for leafy spurge biocontrol agents have been hampered by low success in propagation and slow growth of leafy spurge in the greenhouse. The optimum greenhouse conditions for leafy spurge growth were determined. Leafy spurge was propagated from stem tip cuttings, with the basal end treated with 0.2% NAA, and the plants misted with water for 10 d. Optimum conditions for growth were 27 C air temperature, application of a complete fertilizer at 70 kg ha−1 weekly or 135 kg ha−1 biweekly 20 d after stem tip propagation, in a peat/perlite/vermiculite growth medium at pH 7 and a 16-h photoperiod. Regrowth from roots of parent plants was improved when cuttings were taken from plants at least 60 d old, and plants grew nearly twice as rapidly when the medium was maintained at 30 C compared to 22 C. Refrigeration of stem tip cuttings or roots before planting did not affect survival or growth vigor. Only gibberellic acid of nine plant growth regulators evaluated increased growth, but plants were etiolated. Biotypes from Nebraska and South Dakota were shorter than five others from the United States or Austria but had similar root and shoot dry weight. The time required to propagate vigorous leafy spurge was reduced to 2 mo compared to 6 mo required prior to the study.