The shortwave albedo is a major component in determining the surface energy balance and thus the evolution of the spring melt cycle. As the melt commences, the ice is partitioned into multiple surface types ranging from highly reflective white ice to absorptive blue ice. The reflectance from these surfaces shows significant spatial and temporal variability. Spectral albedo measurements were made at six different sites encompassing these two surface types, from 19 March to 3 May 2005, on 1.5 m thick landfast sea ice in southwestern Hudson Bay, Canada (58˚ N). Furthermore, the broadband albedo and the surface energy balance were continuously recorded at a nearby site during the 1 month period. Rapid changes in the albedo were found to relate to typical subarctic climate conditions, i.e. frequent incursions of southerly air, resulting snow and rain events and the generally high maximum solar insolation levels. Subsequently, diurnal variations in snow surface temperature were evident, often causing daytime melting and night-time refreezing resulting in the formation of ice lenses and superimposed ice. After rain events and extensive melting, the snowpack was transformed throughout into melt/freeze metamorphosed snow and superimposed ice. The integrated (350–1050 nm) albedo varied between 0.52 and 0.95 at the blue-ice sites, while it varied between 0.73 and 0.91 at white-ice sites. Variability on the order of ±10% in the white-ice broadband albedo resulted from the diurnal freeze–thaw cycle, but also synoptic weather events, such as snowfall and rain events, could rapidly change the surface conditions.