Laboratory results are presented concerning ice creep at minimum creep rate (at ~1% strain) for fine-grained, initially isotropic, polycrystalline samples. The effect on the creep rate of ice density, sample shape (aspect ratio) and size, grain-size and ratio of grain-size to sample size is examined. Provided sample density is above ~0.83 Mg m−3 (i.e. the close-off density), there is no effect of density on ice-creep rate. Results provide no evidence of a creep rate dependence on test sample length for cylindrical samples. Sample diameter, however, does affect creep rate. Over the range of sample diameters studied (16.2 to 90 mm) creep rate decreases monotonically by a factor of ~4. This effect is independent of sample aspect ratio. Experiments examining size effects in simple shear indicate no dependence of minimum flow rate on shape or size in this stress configuration. Two grain-sizes were represented within the samples tested for the effect of sample size. As expected from earlier work, no grain-size effect on minimum creep rate is evident. In addition, there was no evidence of an effect on creep rate of the ratio of grain-size to sample size.