Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:14:22.309Z Has data issue: false hasContentIssue false

Nothing but a useful tool? (F)utility and the free-energy principle

Published online by Cambridge University Press:  29 September 2022

Matteo Colombo*
Affiliation:
Tilburg Center for Logic, Ethics and Philosophy of Science, Tilburg University, 5000 LE Tilburg, The Netherlands m.colombo@uvt.nlhttps://mteocolphi.wordpress.com/

Abstract

Bruineberg and collaborators distinguish three philosophical positions about the status of Markov blankets in the context of active inference modelling, namely: literalism, realism, and instrumentalism. They criticize the first two positions and suggest that instrumentalism is “less problematic but also less interesting” (sect. 6.1.2, para. 5) Here, I sketch how literalists and realists might reply to Bruineberg et al.'s criticisms, and I explain why instrumentalism is more interesting and contentious than what Bruineberg and collaborators suggest.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltieri, M., Buckley, C. L., & Bruineberg, J. (2020). Predictions in the eye of the beholder: an active inference account of Watt governors. arXiv preprint arXiv:2006.11495.Google Scholar
Cartwright, N. (2007). Hunting causes and using them: Approaches in philosophy and economics. Cambridge University Press.CrossRefGoogle Scholar
Colombo, M., & Palacios, P. (2021). Non-equilibrium thermodynamics and the free energy principle in biology. Biology & Philosophy, 36(5), 126.CrossRefGoogle Scholar
Gigerenzer, G. (1991). From tools to theories: A heuristic of discovery in cognitive psychology. Psychological Review, 98,254267.CrossRefGoogle Scholar
Kording, K., Blohm, G., Schrater, P., & Kay, K. (2018). Appreciating diversity of goals in computational neuroscience. Preprint: https://doi.org/10.31219/osf.io/3vy69CrossRefGoogle Scholar
Lakatos, I. (1978). Falsification and the methodology of scientific research programmes. In Worrall, J. & Currie, G. (Eds.). The methodology of scientific research programmes (philosophical papers I) (pp. 8101). Cambridge University Press.CrossRefGoogle Scholar
Levy, A., & Godfrey-Smith, P. (Eds.). (2019). The scientific imagination. Oxford University Press.Google Scholar
Marinescu, I. E., Lawlor, P. N., & Kording, K. P. (2018). Quasi-experimental causality in neuroscience and behavioural research. Nature Human Behaviour, 2(12), 891898.CrossRefGoogle ScholarPubMed
Potochnik, A. (2017). Idealization and the aims of science. University of Chicago Press.CrossRefGoogle Scholar
Psillos, S. (1999). Scientific realism: How science tracks truth. Routledge.Google Scholar
Sider, T. (2020). The tools of metaphysics and the metaphysics of science. Oxford University Press.CrossRefGoogle Scholar
Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT Press.Google Scholar
Stanford, P. K. (2006). Instrumentalism. In Sarkar, S. & Pfeifer, J. (Eds.), The philosophy of science: An encyclopedia (pp. 400405). Routledge.Google Scholar
Van Fraassen, B. C. (1980). The scientific image. Oxford University Press.CrossRefGoogle Scholar
Varzi, A. C. (2011). Boundaries, conventions, and realism. In Campbell, J. K., O'Rourke, M., & Slater, M. H. (Eds.), Carving nature at its joints (pp. 129153). MIT Press.CrossRefGoogle Scholar
Wolfram, S. (2002). A new kind of science. Wolfram Media.Google Scholar
Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford University Press.Google Scholar
Zuse, K. (1970). Calculating space. MIT Press.Google Scholar