We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the integer sequence $(E_{n})_{n\geq 1}$, where $E_{n}$ counts the number of possible dimensions for centralisers of $n\times n$ matrices. We give an example to show another combinatorial interpretation of $E_{n}$ and present an implicit recurrence formula for $E_{n}$, which may provide a fast algorithm for computing $E_{n}$. Based on the recurrence, we obtain the asymptotic formula $E_{n}=\frac{1}{2}n^{2}-\frac{2}{3}\sqrt{2}n^{3/2}+O(n^{5/4})$.
We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang [‘Wiener index and traceable graphs’, Bull. Aust. Math. Soc.88 (2013), 380–383]. We also present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius.
We determine a bound for the valency in a family of dihedrants of twice odd prime orders which guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the underlying dihedral group of order $2p$: one is the family of all Cayley graphs and the other is the family of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups, the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the prime $p$ is ‘exceptional’ if and only if it is represented by one of six specific quadratic polynomials.
We improve the known upper bound for the number of Diophantine $D(4)$-quintuples by using the most recent methods that were developed in the $D(1)$ case. More precisely, we prove that there are at most $6.8587\times 10^{29}$$D(4)$-quintuples.
Diophantine problems involving recurrence sequences have a long history. We consider the equation $B_{m}B_{m+d}\cdots B_{m+(k-1)d}=y^{\ell }$ in positive integers $m,d,k,y$ with $\gcd (m,d)=1$ and $k\geq 2$, where $\ell \geq 2$ is a fixed integer and $B=(B_{n})_{n=1}^{\infty }$ is an elliptic divisibility sequence, an important class of nonlinear recurrences. We prove that the equation admits only finitely many solutions. In fact, we present an algorithm to find all possible solutions, provided that the set of $\ell$th powers in $B$ is given. We illustrate our method by an example.
Let $k$ be field of characteristic zero. Let $f\in k[X,Y]$ be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation $f(y^{\prime },y)=0$ is isomorphic to the formal disc $\text{Spf}(k[[Z]])$.
This paper proposes improvements to the modified Fletcher–Reeves conjugate gradient method (FR-CGM) for computing $Z$-eigenpairs of symmetric tensors. The FR-CGM does not need to compute the exact gradient and Jacobian. The global convergence of this method is established. We also test other conjugate gradient methods such as the modified Polak–Ribière–Polyak conjugate gradient method (PRP-CGM) and shifted power method (SS-HOPM). Numerical experiments of FR-CGM, PRP-CGM and SS-HOPM show the efficiency of the proposed method for finding $Z$-eigenpairs of symmetric tensors.
Let ${\mathcal{A}}$ be a locally noetherian Grothendieck category. We construct closure operators on the lattice of subcategories of ${\mathcal{A}}$ and the lattice of subsets of $\text{ASpec}\,{\mathcal{A}}$ in terms of associated atoms. This establishes a one-to-one correspondence between hereditary torsion theories of ${\mathcal{A}}$ and closed subsets of $\text{ASpec}\,{\mathcal{A}}$. If ${\mathcal{A}}$ is locally stable, then the hereditary torsion theories can be studied locally. In this case, we show that the topological space $\text{ASpec}\,{\mathcal{A}}$ is Alexandroff.
In this paper, we obtain some criteria for $p$-nilpotency and $p$-supersolvability of a finite group and extend some known results concerning weakly $S$-permutably embedded subgroups. In particular, we generalise the main results of Zhang et al. [‘Sylow normalizers and $p$-nilpotence of finite groups’, Comm. Algebra43(3) (2015), 1354–1363].
The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$-pure subgroups of the additive group of the ring of $p$-adic integers are investigated using only elementary methods.
An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.
We give a new necessary and sufficient condition for an iterated function system to satisfy the deterministic chaos game. As a consequence, we give a new example of an iterated function system which satisfies the deterministic chaos game.
In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.
Let ${\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ be the set of Cowen–Douglas operators of index $n$ on a nonempty bounded connected open subset $\unicode[STIX]{x1D6FA}$ of $\mathbb{C}$. We consider the strong irreducibility of a class of Cowen–Douglas operators ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ on Banach spaces. We show ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})\subseteq {\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ and give some conditions under which an operator $T\in {\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ is strongly irreducible. All these results generalise similar results on Hilbert spaces.
We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.
The aim of this paper is to introduce a new measure of noncompactness on the Sobolev space $W^{n,p}[0,T]$. As an application, we investigate the existence of solutions for some classes of functional integro-differential equations in this space using Darbo’s fixed point theorem.
The space of shapes of quadrilaterals can be identified with $\mathbb{CP}^{2}$. We deal with the subset of $\mathbb{CP}^{2}$ corresponding to convex quadrilaterals and the subset which corresponds to simple (that is, without self-intersections) quadrilaterals. We provide a complete description of the topological closures in $\mathbb{CP}^{2}$ of both spaces. Although the interior of each space is homeomorphic to a disjoint union $\mathbb{R}^{4}\sqcup \mathbb{R}^{4}$, their closures are topologically different. In particular, the boundary of the space corresponding to convex quadrilaterals is homeomorphic to a pair of three-dimensional spheres glued along a Möbius strip while the boundary of the space corresponding to simple quadrilaterals is more complicated.