In his recent book [3] Nadler observes that the property of admitting a Whitney map is of fundamental importance in studying the internal structure of hyperspaces, especially their arc structure. Nadler presents three distinct methods of constructing a Whitney map on the hyperspace 2X of nonempty closed subsets of a continuum.
A partially ordered space is a topological space X endowed with a partial order ≤ whose graph is a closed subset of X×X. It is well-known (see, for example, [2], page 167) that if X is a regular Hausdorff space then 2X is a partially ordered space with respect to inclusion.