This study utilizes parallel, longitudinal entomological and parasitological data collected during a 5-year vector control programme in Pondicherry, South India, to quantify Wuchereria bancrofti transmission from the vector to the human population. A simple mathematical model, derived from the standard catalytic model, is used to examine the hypothesis that current infection prevalence in young children is a dynamical function of their cumulative past exposure to infective bites. Maximum likelihood fits of the model to the observed data indicate a constant child infection rate with age, above a threshold representing the pre-patent period, or equivalently, the cumulative biting intensity required to produce patent infections. Extrapolation of the model allows the crude estimation of the equilibrium microfilaria age-prevalence curve due to control. The results suggest that vector control alone may have little impact on the overall age-prevalence of infection even when sustained for long periods. These observations are discussed in terms of the likely impact of density dependent mechanisms, such as acquired immunity, on model predictions.