A study was made of the changes in the rates of oxidation of the C(1), C(2) and C(6) atoms of glucose and in the pathways of glucose catabolism in sheep udder tissue in vitro which occurred when acetate and pyruvate were added.
Whereas in rat mammary tissue the rate of oxidation of the C(1) atom of glucose was very much greater than that of the C(6) atom, the ratio of the rates of oxidation of these 2 atoms in sheep tissue was less than 2 when glucose was the only substrate.
The addition of acetate resulted in an unequal stimulation of the oxidation of these 2 atoms, with the result that the ratio of their rates of oxidation was about doubled. The rate of oxidation of the C(2) atom was also increased.
Acetate also increased the participation of the pentose phosphate pathway in glucose catabolism as measured by the incorporation of the C(1) and C(6) atoms of glucose into fatty acids, lactic acid and glycerol.
Pyruvate produced little effect on the rate of oxidation of the C(1) atom but somewhat depressed that of the C(6) atom of glucose. At the same time, it caused a large increase in the participation of the pentose phosphate pathway.
These results are discussed with reference to re-cycling of glucose carbon in the pentose phosphate pathway and to the relationship between that pathway and fatty acid synthesis. It is noted that the incorporation of glucose carbon into the 3 intermediates used gave values for the participation of that pathway which were in better agreement than was obtained in rat tissue. It is concluded that triose phosphates are more nearly in equilibrium in sheep than in rat mammary tissue.