In this paper, we review recent and ongoing work by our group on numerical simulations of relativistic jets. Relativistic outflows in astrophysics are related to dilute, high energy plasmas, with physical conditions out of the reach of current laboratory capabilities. Simulations are thus imperative for the study of these objects. We present a number of such scenarios that have been studied by our group at the Universitat de València. In particular, we have focused on the evolution of extragalactic outflows through galactic and intergalactic environments, deceleration by interaction with stars or clouds or the propagation of jets in X-ray binaries and interaction with stellar winds from massive companions. All also share their role as particle acceleration sites and production of non-thermal radiation throughout the electromagnetic spectrum. Therefore, our work is not only aimed at understanding the impact of outflows on their environments and thus their role in galaxy and cluster evolution, but also the nature and capabilities of these sites as generators of high- and very-high-energy radiation and cosmic rays.