In magnetic confinement fusion devices close to axisymmetry, such as tokamaks, a key element is the winding profile of the magnetic field lines, or its inverse, the safety profile $q=q_{\boldsymbol {B}}$ . A corresponding profile, $q_{\boldsymbol {J}}$
. A corresponding profile, $q_{\boldsymbol {J}}$ , can be defined for the current density field lines. Ampère's law relates any mode of current perturbation $\delta \boldsymbol {J}_{m,n}$
, can be defined for the current density field lines. Ampère's law relates any mode of current perturbation $\delta \boldsymbol {J}_{m,n}$ with a mode of magnetic perturbation $\delta \boldsymbol {B}_{m,n}$
 with a mode of magnetic perturbation $\delta \boldsymbol {B}_{m,n}$ . It is shown that the knowledge of the pair $(q_{\boldsymbol {B}},q_{\boldsymbol {J}})$
. It is shown that the knowledge of the pair $(q_{\boldsymbol {B}},q_{\boldsymbol {J}})$ allows us then to characterize the resonant, or non-resonant, nature of the modes for both the magnetic and current density field lines. The expression of $q_{\boldsymbol {J}}$
 allows us then to characterize the resonant, or non-resonant, nature of the modes for both the magnetic and current density field lines. The expression of $q_{\boldsymbol {J}}$ in the flux coordinate is derived. Including this calculation in real-time Grad–Shafranov equilibrium reconstruction codes would yield a comprehensive view of the magnetics. The monitoring of the pair $(q_{\boldsymbol {B}},q_{\boldsymbol {J}})$
 in the flux coordinate is derived. Including this calculation in real-time Grad–Shafranov equilibrium reconstruction codes would yield a comprehensive view of the magnetics. The monitoring of the pair $(q_{\boldsymbol {B}},q_{\boldsymbol {J}})$ would then allow us to investigate the role played by the resonant modes for the current density, that are current filamentary modes, in the plasma small-scale turbulence. By driving the magnetic and current density profiles apart so that the images of $q_{\boldsymbol {B}}$
 would then allow us to investigate the role played by the resonant modes for the current density, that are current filamentary modes, in the plasma small-scale turbulence. By driving the magnetic and current density profiles apart so that the images of $q_{\boldsymbol {B}}$ and $q_{\boldsymbol {J}}$
 and $q_{\boldsymbol {J}}$ are disjoint, these filamentary modes would not impact the magnetic field topology, being not associated with magnetic islands but with non-resonant magnetic modes. It remains to be explored to what extent such a configuration, where the spectrum of tiny current density filaments produces a spectrum of magnetic modes that has practically no effect on heat transport, is beneficial.
 are disjoint, these filamentary modes would not impact the magnetic field topology, being not associated with magnetic islands but with non-resonant magnetic modes. It remains to be explored to what extent such a configuration, where the spectrum of tiny current density filaments produces a spectrum of magnetic modes that has practically no effect on heat transport, is beneficial.