In this paper we present an equivalence between the category of commutative regular rings and the category of Boolean-valued fields, i.e., Boolean-valued sets for which the field axioms are true. The author used this equivalence in [12] to develop a Galois theory for commutative regular rings. Here we apply the equivalence to give an alternative construction of an algebraic closure for any commutative regular ring (the original proof is due to Carson [2]).
Boolean-valued sets were developed in 1965 by Scott and Solovay [10] to simplify independence proofs in set theory. They later were applied by Takeuti [13] to obtain results on Hilbert and Banach spaces. Ellentuck [3] and Weispfenning [14] considered Boolean-valued rings which consisted of rings and associated Boolean-valued relations. (Lemma 4.2 shows that their equality relation is the same as the one used in this paper.) To the author's knowledge, the present work is the first to employ the Boolean-valued sets of Scott and Solovay to obtain results in algebra.
The idea that commutative regular rings can be studied by examining the properties of related fields is not new. For several years algebraists and logicians have investigated commutative regular rings by representing a commutative regular ring as a subdirect product of fields or as the ring of global sections of a sheaf of fields over a Boolean space (see, for example, [9] and [8]). These representations depend, as does the work presented here, on the fact that the set of central idempotents of any ring with identity forms a Boolean algebra. The advantage of the Boolean-valued set approach is that the axioms of classical logic and set theory are true in the Boolean universe. Therefore, if the axioms for a field are true for a Boolean-valued set, then other properties of the set can be deduced immediately from field theory.