Given a compact Hausdorff space X, E and F two Banach spaces, let T: C(X, E) → F denote a bounded linear operator (here C(X, E) stands for the Banach space of all continuous E-valued functions defined on X under supremum norm). It is well known [4] that any such operator T has a finitely additive representing measure G that is defined on the σ–field of Borel subsets of X and that G takes its values in the space of all bounded linear operators from E into the second dual of F. The representing measure G enjoys a host of many important properties; we refer the reader to [4] and [5] for more on these properties. The question of whether properties of the operator T can be characterized in terms of properties of the representing measure has been considered by many authors, see for instance [1], [2], [3] and [6]. Most characterizations presented (see [3] concerning weakly compact operators or [3] and [6] concerning unconditionally converging operators) were given under additional assumptions on the Banach space E. The aim of this paper is to show that one cannot drop the assumptions on E, indeed as we shall soon show many of the operator characterizations characterize the Banach space E itself. More specifically, it is known [3] that if E* and E** have the Radon-Nikodym property then a bounded linear operator T: C(X, E) → F is weakly compact if and only if the measure G is continuous at Ø (also called strongly bounded), i.e. limn ||G|| (Bn) = 0 for every decreasing sequence Bn ↘ Ø of Borel subsets of X (here ||G|| (B) denotes the semivariation of G at B), and if for every Borel set B the operator G(B) is a weakly compact operator from E to F. In this paper we shall show that if one wants to characterize weakly compact operators as those operators with the above mentioned properties then E* and E** must both have the Radon-Nikodym property. This will constitute the first part of this paper and answers in the negative a question of [2]. In the second part we consider unconditionally converging operators on C(X, E). It is known [6] that if T: C(X, E) → F is an unconditionally converging operator, then its representing measure G is continuous at 0 and, for every Borel set B, G(B) is an unconditionally converging operator from E to F. The converse of the above result was shown to be untrue by a nice example (see [2]). Here again we show that if one wants to characterize unconditionally converging operators as above, then the Banach space E cannot contain a copy of c0. Finally, in the last section we characterize Banach spaces E with the Schur property in terms of properties of Dunford-Pettis operators on C(X, E) spaces.