We report white light emission from ZnO nanostructures in powder form, prepared by microwave irradiation-assisted chemical synthesis, in the presence of a structure directing agent. Determination of their crystallinity, actual shape, and orientation was made using X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and optical properties have been studied through photoluminescence (PL), measured using He-Cd laser (325 nm) as the excitation source. There is a noticeable variation in the luminescence correlated with variation of process parameters, such as microwave power, duration of irradiation, and the type/concentration of surfactants. The CIE (Commission Internationale l’Eclairage) diagram shows that the luminescence lies in yellow region of the color space. As the luminescence from the powder of ZnO lies in the yellow region, it is possible to produce white light from the powder of ZnO by using a blue laser as the excitation source.