The fundamental research topic in actinide chemistry and materials sciences is the role that the 5f electrons play in bond formation, which provides the central focus for DOE BES-supported actinide science. Structural systematics of the actinide metals, oxides, and other compounds as a function of atomic number are well established. Magnetic measurements have shown that the light actinide metals have delocalized 5f orbitals (i.e., the 5f electrons form bands), whereas the f electrons become localized at americium. Thus, the magnetic behavior of the first part of the actinide series resembles that of the d transition metals whereas the heavier actinides exhibit behavior similar to the rare earth metals. Spectroscopic results have established electronic energy levels, crystal field splitting, and near-neighbor coordination. The 5f orbitals participate in the band structure of materials that contain the light actinide metals and some of their intermetallic compounds, and perhaps in molecular compounds. Molecular-level information on the geometry and bonding in solids, at surfaces, and in clusters can now be obtained at BES-supported facilities.