To explore competitive or cooperative effects novel organic-inorganic hybrid copolymers are being prepared and studied. The use of polyhedral oligomeric silsesquioxanes (POSS), a molecularly precise isotropic comonomer, is being utilized to take advantage of the inherent size scale of these particles, average diameters of 1-2 nm. The organic component selected for study in these hybrid systems are either semi-crystalline or amorphous polymers. The architectures of the hybrid copolymers range from random, to precise block copolymers, as well as telechelic and hemi-telechelic end-functionalized model compounds. The degree of POSS aggregation that occurs is found to be a function of thermal history, and processing conditions. Templating, or arresting, aggregation can be achieved using either crystalline organic polymer scaffolds in the bulk. The second inorganic comonomers for study has been constructed from icosahedral carboranes. Dicarbo-closo-decaboranes have been widely investigated for their thermal stability, chemical resistance, unique geometry, and the high cross-section for the capture of thermal neutrons. While carboranes have been widely incorporated into small molecules, metal complexes, and on a limited basis in polymer systems relatively little work exists relating their unique properties to systems with extended π-conjugation. Details of the syntheses, characterization and performance properties of both sets of hybrid systems will be discussed.