Aegilops species provide an invaluable source of genes for the improvement of cultivated wheats. This paper illustrates how the existing geo-referenced passport data associated with Aegilops species can be used to identify gaps in current conservation and also to develop a more systematic conservation strategy for the genus. Taxonomic, ecological, geographic and conservation information for the 22 Aegilops species were collated from ICARDA, EURISCO, GRIN and SINGER datasets, synthesized and analysed. The combined database contained 9866 unique geo-referenced observations collected between 1932 and 2004. Patterns of specific distribution based on the germplasm accession data and the predicted distribution using climatic models were compared in conservation gap analysis using GIS tools. The ex situ conservation status of each taxon was assessed and used to provide a priority ranking. Future ex situ collection is recommended in Cyprus, Egypt, Greece, Iran, Israel, Libya, Spain, Syria, Tajikistan, Tunisia, Turkey, Turkmenistan and Uzbekistan. The species identified with the highest ex situ conservation priority are as follows: Aegilops bicornis, Aegilops comosa, Aegilops juvenalis, Aegilops kotschyi, Aegilops peregrina, Aegilops sharonensis, Aegilops speltoides, Aegilops uniaristata and Aegilops vavilovii. Patterns of species richness based on the germplasm accession passport data are presented and five complementary regions of Aegilops diversity were identified in west Syria and north Lebanon, central Israel, north-west Turkey, Turkmenistan and south France. Within these areas, 16 IUCN-recognized protected areas are found and these are identified as potential sites to establish genetic reserves. However, the premier Aegilops hotspots on the Syrian/Lebanese border are not coincident with any existing internationally recognized protected areas, and here there is a need to establish a novel protected area.