The effect of calcination temperature during the formation of the solid solution Sn0.9Ti0.1O2 doped with 1.00 mol % CoO and 0.05 mol % Nb2O5 is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O2 phase and near 1000 °C, and the remaining TiO2 (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 °C associated with the presence of TiO2 (anatase) and the second mechanism, occurring between 1200 and 1300 °C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies.