We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a statistical analysis of the relative orientation between the plane-of-sky magnetic field and the filaments associated with the Galactic Cold Clumps. We separated polarization parameters components of the filaments and their background using thin optical medium assumption, the filaments were detected using the Rolling Hough Transform algorithm and we separated the clump and the filament contributions in our maps. We found that in high column density environments the magnetic fields inside the filaments and in the background are less likely to be aligned with each other. This suggests a decoupling between the inner and background magnetic fields at some stage of filaments’ evolution. A preferential alignment between the filaments and their inferred magnetic fields is observed in the whole selection if the clumps’ contribution is subtracted. Interestingly, a bimodal distribution of relative orientation is observed between the filamentary structures of the clumps and the filaments’ magnetic field. Similar results are seen in a subsample of nearby filaments. The relative orientation clearly shows a transition from parallel to no preferential and perpendicular alignment depending on the volume densities of both clumps and filaments. Our results confirm a strong interplay between the magnetic field and filamentary structures during their formation and evolutionary process.
Filamentary molecular clouds are thought to fragment to form clumps and cores. However, the fragmentation may be suppressed by magnetic force if the magnetic fields run perpendicularly to the cloud axis. We evaluate the effect using a simple model. Our model cloud is assumed to have a Plummer like radial density distribution,
$\rho = {\rho _{\rm{c}}}{\left[ {1 + {r^2}/(2p{H^2})} \right]^{2p}}$
, where r and H denote the radial distance from the cloud axis and the scale length, respectively. The symbols, ρc and p denote the density on the axis and radial density index, respectively. The initial magnetic field is assumed to be uniform and perpendicular to the cloud axis. The model cloud is assumed to be supported against the self gravity by gas pressure and turbulence. We have obtained the growth rate of the fragmentation instability as a function of the wavelength, according to the method of Hanawa, Kudoh & Tomisaka (2017). The instability depends crucially on the outer boundary. If the displacement vanishes in regions very far from the cloud axis, cloud fragmentation is suppressed by a moderate magnetic field. If the displacement is constant along the magnetic field in regions very far from the cloud, the cloud is unstable even when the magnetic field is infinitely strong. The wavelength of the most unstable mode is longer for smaller index, p.
The Planck catalogue of Galactic cold clumps, PGCC, contains sources of ongoing and future star formation. The data show clear variations also in their dust properties.
We use Planck polarization measurements to investigate the polarization fraction in PGCC clumps and the relative orientation of filamentary structures and magnetic fields (Alina et al. 2017). The decrease of polarization fraction as a function of column density can be related to the field geometry but also suggest some loss of grain alignment.
PGCCs have been studied with ground-based observations (Liu et al. 2018). The first SCUBA-2/POL-2 polarization studies have targeted the infrared dark cloud G35.39-0.33. The magnetic field is found to be mostly perpendicular to the main filament. The plane-of-the-sky field strength is
$\sim 50\mu \,{\rm{G}}$
, a noticeable support against gravity. The polarization fraction decreases with increasing column density. This matches predictions of RAT grain alignment models but the relative contribution of the field morphology is hard to quantify (Juvela et al. 2018).
We continue to use MHD simulations to study the same phenomena, with synthetic observations of clumps and filaments.
With using the Planck polarization data (PR2, 2016A A…596A.109P), we investigate the magnetic fields in L1689 and associated clouds, and compare them with centroid velocities VLSR of 12CO and 13CO from the COMPLETE survey (2006AJ….131.2921R). We observe two components in this elongated region: in one component, the position angle of the magnetic field varies from –10 to 110 degrees in the galactic coordinate, while VLSR is rather constant (=4 ± 0.5 km/s). In the other component with the position angle being constant (=110 ± 15 degrees), the velocity VLSR shows a spatial gradient from 3 to 5 km/s, as one goes from west to east along the direction of elongation. If the east side of the component is more distant from us than the west, this gradient suggests that this component is stretching. This work is supported by JSPS KAKENHI Grant Number JP18H03720 (PI: Koji S. Kawabata).
Translucent molecular clouds represent a vastly underexplored regime of cloud evolution in terms of the effect of the magnetic field. Their pristine nature renders them ideal for investigating the initial properties of the magnetic field, prior to the onset of star formation. Using starlight polarimetry, we map the plane-of-sky magnetic field orientation throughout 10 sq. degrees of the Polaris Flare translucent molecular cloud. We provide the first quantitative estimate of the magnetic field strength in this type of system. By combining our measurements with the high-resolution Herschel dust emission map, we find a preferred alignment between filaments and the observed magnetic field. Our results support the presence of a strong magnetic field in this system (Panopoulou et al. 2016).
We have carried out near-IR imaging polarimetry toward RCW 106 with the JHKs-simultaneous imaging polarimeter SIRPOL mounted on the IRSF 1.4m telescope at SAAO, in March and May, 2017 and January, 2018. We have observed 29 fields and covered mostly the southern part of the giant molecular cloud complex associated with the ${{\rm{H}}_\mathbb{I}}$ region RCW 106, which is located at a distance of 3.5 kpc (Moises etal 2011) and is elongated approximately in the north-south direction with a size of ∼70×15 pc. Our preliminary analysis indicates that the magnetic field seems to globally run along the complex elongation, unlike many other elongated clouds that are often reported to have their global elongations perpendicular to the magnetic fields. The RCW 106 complex consists of many small filaments or clumps. Some of such filaments seem to parallel to the magnetic fields, but some others perpendicular. Around the central part of the ${{\rm{H}}_\mathbb{I}}$ region RCW 106, the magnetic field appears to be influenced by the expansion of this ${{\rm{H}}_\mathbb{I}}$ region. Here, we present our preliminary results by comparing with the archival molecular line and far- to mid-IR data.
In star-forming environments, shock-compressed magnetic fields occur in cloud-cloud collisions, in molecular clouds exposed to supernova remnants (SNRs), and in photo-dissociation regions (PDRs). Besides their dynamical role, they increase the cosmic ray flux above the Galactic average, and the trapped particles contribute to the heating of the shocked gas. The associated dust emission is polarized perpendicularly to the sky plane projection of the field, Bsky. In edge-on viewed shock planes, highly ordered polarization patterns are expected. In search of such a signature, the dust emission from the Orion bar (a prototypical PDR) and from a molecular cloud/SNR interface (IC443-G) was studied with a λ870μm polarimeter at the APEX (Wiesemeyer etal 2014 and references therein). While our polarization map of OMC1 confirms the hourglass shape of Bsky (e.g., Schleuning 1998, Houde etal 2004), a deep integration towards the Orion bar reveals an alignment of Bsky with the shock forming in response to the wind and to the ionizing radiation from the Trapezium cluster (Fig. 1). This structure suggests a compressed magnetic field accelerating cosmic-ray particles, a scenario proposed by [Pellegrini et al. (2009)] to explain the high excitation temperature of rotationally warm H2 and CO (Shaw et al. 2009, Peng et al. 2012, respectively).
Magnetic fields play a significant role during star formation processes, hindering the fragmentation and the collapse of the parental cloud, and affecting the accretion mechanisms and feedback phenomena. However, several questions still need to be addressed to clarify the importance of magnetic fields at the onset of high-mass star formation, such as how strong they are and at what evolutionary stage and spatial scales their action becomes relevant. Furthermore, the magnetic field parameters are still poorly constrained especially at small scales, i.e. few astronomical units from the central object, where the accretion disc and the base of the outflow are located. Thus we need to probe magnetic fields at different scales, at different evolutionary steps and possibly with different tracers. We show that the magnetic field morphology around high-mass protostars can be successfully traced at different scales by observing maser and dust polarised emission. A confirmation that they are effective tools is indeed provided by our recent results from 6.7 GHz MERLIN observations of the massive protostar IRAS 18089-1732, where we find that the small-scale magnetic field probed by methanol masers is consistent with the large-scale magnetic field probed by dust (Dall’Olio et al. 2017 A&A 607, A111). Moreover we present results obtained from our ALMA Band 7 polarisation observations of G9.62+0.20, which is a massive star-forming region with a sequence of cores at different evolutionary stages (Dall’Olio et al. submitted to A&A). In this region we resolve several protostellar cores embedded in a bright and dusty filamentary structure. The magnetic field morphology and strength in different cores is related to the evolutionary sequence of the star formation process which is occurring across the filament.
Magnetic fields are believed to redistribute part of the angular momentum during the collapse and could explain the order-of-magnitude difference between the angular momentum observed in protostellar envelopes and that of a typical main sequence star. The Class 0 phase is the main accretion phase during which most of the final stellar material is collected on the central embryo. To study the structure of the magnetic fields on 50-2000 au scales during that key stage, we acquired SMA polarization observations (870μm) of 12 low-mass Class 0 protostars. In spite of their low luminosity, we detect dust polarized emission in all of them. We observe depolarization effects toward high-density regions potentially due to variations in alignment efficiency or in the dust itself or geometrical effects. By comparing the misalignment between the magnetic field and the outflow orientation, we show that the B is either aligned or perpendicular to the outflow direction. We observe a coincidence between the misalignment and the presence of large perpendicular velocity gradients and fragmentation in the protostar (Galametz et al. 2018). Our team is using MHD simulations combined with the radiative transfer code POLARIS to produce synthetic maps of the polarized emission. This work is helping us understand how the magnetic field varies from the large-scale to the small-scales, quantify beam-averaging biases and study the variations of the polarization angles as a function of wavelength or the assumption made on the grain alignment (see poster by Valdivia).
In the era of ALMA, we can now resolve polarization within circumstellar disks at (sub)millimeter wavelengths. While many initially hoped that these observations would map magnetic fields in disks, the observed polarization patterns indicate other possible polarization mechanisms. These alternative polarization mechanisms include Rayleigh self-scattering, grains aligning with the radiation anisotropy (k-RAT alignment), and mechanical alignment. Stephens et al. (2017) specifically showed that the polarization morphology in HL Tau changes rapidly with wavelength; the morphology is uniform at 870 μm, azimuthal at 3.1 mm, and ∼50%/50% mix of the two at 1.3 mm. Although it has been suggested that the polarized emission at 870 μm is due to scattering and at 3.1 mm is due to k-RAT alignment, both mechanisms appear to have shortcomings. Specifically, Kataoka et al. (2017) showed that scattering requires much smaller grains (10s of μm) than that suggested by other studies, while k-RAT alignment suggest a significant decrease in polarization along the minor axis, which is not seen. Studies of other disks have suggested that polarization may come from grains aligned with the magnetic fields, but these studies are inconclusive. Understanding and extracting information about the polarized emission from disks requires multi-wavelength and high resolution observations.
It has been recognized that non-ideal MHD effects (Ohmic diffusion, Hall effect, ambipolar diffusion) play crucial roles for the circumstellar disk formation and evolution. Ohmic and ambipolar diffusion decouple the gas and the magnetic field, and significantly reduces the magnetic torque in the disk, which enables the formation of the circumstellar disk (e.g., Tsukamoto et al. 2015b). They set an upper limit to the magnetic field strength of ∼ 0.1 G around the disk (Masson et al. 2016). The Hall effect notably changes the magnetic torques in the envelope around the disk, and strengthens or weakens the magnetic braking depending on the relative orientation of magnetic field and angular momentum. This suggests that the bimodal evolution of the disk size possibly occurs in the early disk evolutionary phase (Tsukamoto et al. 2015a, Tsukamoto et al. 2017). Hall effect and ambipolar diffusion imprint the possibly observable characteristic velocity structures in the envelope of Class 0/I YSOs. Hall effect forms a counter-rotating envelope around the disk. Our simulations show that counter rotating envelope has the size of 100–1000 au and a recent observation actually infers such a structure (Takakuwaet al. 2018). Ambipolar diffusion causes the significant ion-neutral drift in the envelopes. Our simulations show that the drift velocity of ion could become 100-1000 ms–1.
The role of the magnetic field during protostellar collapse is still poorly constrained from an observational point of view, and only few constraints exist that shed light on the magnetic braking efficiency during the main accretion phase. I presented our ALMA polarimetric observations of the thermal dust continuum emission at 1.3 mm, towards the B335 Class 0 protostar (Maury et al. 2018a). Linearly polarized dust emission is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. We compared our data to a family of magnetized protostellar collapse models. We show that only models with an initial core mass-to-flux ratio μ∼5-6 are able to reproduce the observed properties of B335, especially the upper-limits on its disk size, its large-scale envelope rotation β and the pronounced magnetic field lines pinching observed in our ALMA data. In these MHD models, the magnetic field is dynamically relevant to regulate the typical outcome of protostellar collapse, suggesting a magnetically-regulated disk formation scenarios is at work in B335.
The role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.
Magnetic fields play a key role during the gravitational collapse of dense protostellar cores. In recent years mm and sub-mm observations of dust polarized emission have been used to unveil the morphology of the magnetic field, but this method relies on the assumption that non-spherical dust grains are well aligned with the magnetic field.
Using non-ideal MHD numerical simulations, we study the evolution of the magnetic field during the gravitational collapse. We use the state-of-the-art radiative transfer code POLARIS to compute the Stokes parameters and produce synthetic observations of mm/submm polarized dust emission. We compare the results obtained using the radiative torques (RAT) mechanism to the results obtained by assuming that grains are perfectly aligned to constrain how well polarized dust emission traces the magnetic field orientation.
The complexity of the magnetic field produces a mild depolarization. The depolarization observed in the inner regions is rather caused by a decrease of the dust alignment efficiency and it cannot be reproduced by just scaling down the polarisation degree obtained for a uniform efficiency. We find that the magnetic field orientation is well constrained by the polarized dust emission as long as its 3D topology remains organized.
Ambipolar diffusion can cause a velocity drift between ions and neutrals. This is one of the non-ideal MHD effects proposed to enable the formation of large Keplerian disks with sizes of tens of au (Zhao et al. 2018). To observationally study ambipolar diffusion in collapsing protostellar envelopes, we analyzed the ALMA H13CO+ (3–2) and C18O (2–1) data of the protostar B335, which is a candidate source with efficient magnetic braking (Yen et al. 2015). We constructed kinematical models to fit the velocity structures observed in H13CO+ and C18O. With our kinematical models, the infalling velocities in H13CO+ and C18O are both measured to be 0.85 ± 0.2 km s−1 at a radius of 100 au, suggesting that the velocity drift between the ionized and neutral gas is at most 0.3 km s−1 at a radius of 100 au in B335. The Hall parameter for H13CO+ is estimated to be ≫1 on a 100 au scale in B335, so that H13CO+ is expected to be attached to the magnetic field. Our non-detection or upper limit of the velocity drift between the ionized and neutral gas could suggest that the magnetic field remains rather well coupled to the bulk neutral material on a 100 au scale in B335, and that any significant field-matter decoupling, if present, likely occurs only on a smaller scale, leading to an accumulation of magnetic flux and thus efficient magnetic braking in the inner envelope in B335.
Magnetic fields play a key role in the early life of stars and their planets, as they form from collapsing dense cores that progressively flatten into large-scale accretion discs and eventually settle as young suns orbited by planetary systems. Pre-main-sequence phases, in which central protostars feed from surrounding planet-forming accretion discs, are especially crucial for understanding how worlds like our Solar System are born.
Magnetic fields of low-mass T Tauri stars (TTSs) are detected through high-resolution spectroscopy and spectropolarimetry (e.g., Johns Krull 2007), whereas their large-scale topologies can be inferred from time series of Zeeman signatures using tomographic techniques inspired from medical imaging (Donati & Landstreet 2009). Large-scale fields of TTSs are found to depend on the internal structure of the newborn star, allowing quantitative models of how TTSs magnetically interact with their inner accretion discs, and the impact of this interaction on the subsequent stellar evolution (e.g., Romanova et al. 2002, Zanni & Ferreira 2013).
With its high sensitivity to magnetic fields, SPIRou, the new near-infrared spectropolarimeter installed in 2018 at CFHT (Donati et al. 2018), should yield new advances in the field, especially for young embedded class-I protostars, thereby bridging the gap with radio observations.
Protoplanetary disks are expected to form through the gravitational collapse of magnetized rotating dense cores. We discuss the structure and emission of models of accretion disks threaded by a poloidal magnetic field and irradiated by the central star, expected to form in this process (Shu et al. 2007; Lizano et al. 2016). The poloidal magnetic field produces sub-keplerian rotation of the gas which can accelerate planet migration (Adams et al. 2009). It can make the disk more stable against gravitational perturbations (Lizano et al. 2010). Also, the magnetic compression can reduce the disk scale height with respect to nonmagnetic disks. We find that the mass-to-flux ratio λ is a critical parameter: disks with a weaker magnetization (high values of λ) are denser and hotter and emit more at millimeter wavelengths than disks with a stronger magnetization (low values of λ). Applying these models to the millimeter observations of the disk around the young star HL Tau indicate the large grains are present at the external radii in order to reproduce the observed 7 mm emission that extends up to 100 AU (Tapia & Lizano 2017). In the near future, observations with ALMA and VLA will be able to determine the level of magnetization of protoplanetary disks, which will be important to understand their formation and evolution.
Models of magnetically driven accretion reproduce many observational properties of T Tauri stars. For the more massive Herbig Ae/Be stars, the corresponding picture has been questioned lately, in part driven by the fact that their magnetic fields are typically one order of magnitude weaker. Indeed, the search for magnetic fields in Herbig Ae/Be stars has been quite time consuming, with a detection rate of about 10% (e.g. Alecian et al. 2008), also limited by the current potential to detect weak magnetic fields. Over the last two decades, magnetic fields were found in about twenty objects (Hubrig et al. 2015) and for only two Herbig Ae/Be stars was the magnetic field geometry constrained. Ababakr, Oudmaijer & Vink (2017) studied magnetospheric accretion in 56 Herbig Ae/Be stars and found that the behavior of Herbig Ae stars is similar to T Tauri stars, while Herbig Be stars earlier than B7/B8 are clearly different. The origin of the magnetic fields in Herbig Ae/Be stars is still under debate. Potential scenarios include the concentration of the interstellar magnetic field under magnetic flux conservation, pre-main-sequence dynamos during convective phases, mergers, or common envelope developments. The next step in this line of research will be a dedicated observing campaign to monitor about two dozen HAeBes over their rotation cycle.
Studies of the presence of magnetic fields in Herbig Ae/Be stars are extremely important because they enable us to improve our insight into how the magnetic fields of these stars are generated and how they interact with their environment, including their impact on the planet formation process and the planet-disk interaction. We report new detections of weak mean longitudinal magnetic fields in the close Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 (Järvinen et al. 2018) based on observations obtained with HARPSpol attached to ESO’s 3.6 m telescope. Such studies are important because only very few close spectroscopic binaries with orbital periods below 20 d are known among Herbig Ae stars. Our detections favour the conclusion that the previously suggested low incidence (5-10%) of magnetic Herbig Ae stars can be explained by the weakness of these fields and the limited accuracy of the published measurements. The search for magnetic fields and the determination of their geometries in close binary systems will play an important role for understanding the mechanisms that are responsible for the magnetic field generation.