Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T07:29:52.885Z Has data issue: false hasContentIssue false

Human path navigation in a three-dimensional world

Published online by Cambridge University Press:  08 October 2013

Michael Barnett-Cowan
Affiliation:
The Brain and Mind Institute, The University of Western Ontario, London, Ontario, N6A 5B7Canada. mbarnettcowan@gmail.comwww.sites.google.com/site/mbarnettcowan/
Heinrich H. Bülthoff
Affiliation:
Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany. hhb@tuebingen.mpg.dewww.kyb.mpg.de/~hhb Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Korea

Abstract

Jeffery et al. propose a non-uniform representation of three-dimensional space during navigation. Fittingly, we recently revealed asymmetries between horizontal and vertical path integration in humans. We agree that representing navigation in more than two dimensions increases computational load and suggest that tendencies to maintain upright head posture may help constrain computational processing, while distorting neural representation of three-dimensional navigation.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett-Cowan, M., Dyde, R. T. & Harris, L. R. (2005) Is an internal model of head orientation necessary for oculomotor control? Annals of the New York Academy of Sciences 1039:314–24.CrossRefGoogle ScholarPubMed
Barnett-Cowan, M., Fleming, R. W., Singh, M. & Bülthoff, H. H. (2011) Perceived object stability depends on multisensory estimates of gravity. PLoS ONE 6(4):e19289.CrossRefGoogle ScholarPubMed
Barnett-Cowan, M., Meilinger, T., Vidal, M., Teufel, H. & Bülthoff, H. H. (2012) MPI CyberMotion Simulator: Implementation of a novel motion simulator to investigate multisensory path integration in three dimensions. Journal of Visualized Experiments (63):e3436.CrossRefGoogle ScholarPubMed
Brodsky, M. C., Donahue, S. P., Vaphiades, M. & Brandt, T. (2006) Skew deviation revisited. Survey of Ophthalmology 51:105–28.CrossRefGoogle ScholarPubMed
Dyde, R. T., Jenkin, M. R. & Harris, L. R. (2006) The subjective visual vertical and the perceptual upright. Experimental Brain Research 173:612–22.Google Scholar
European Aviation Safety Agency. (2006) EASA Annual Safety Review, 2006. EASA (European Aviation Safety Agency, Cologne, Germany).Google Scholar
Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A. & Jeffery, K. J. (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nature Neuroscience 14(9):1182–88.Google Scholar
Hengstenberg, R. (1991) Gaze control in the blowfly Calliphora: A multisensory, two-stage integration process. Seminars in Neuroscience 3(1):1929. Available at: http://www.sciencedirect.com/science/article/pii/104457659190063T.CrossRefGoogle Scholar
Kluzik, J., Horak, F. B. & Peterka, R. J. (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Experimental Brain Research 162:474–89. Available at: http://link.springer.com/article/10.1007%2Fs00221-004-2124-6.CrossRefGoogle Scholar
Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W. & Fry, P. A. (1993) Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General 122:7391.CrossRefGoogle ScholarPubMed
MacNeilage, P. R., Banks, M. S., Berger, D. R. & Bülthoff, H. H. (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Experimental Brain Research 179:263–90.Google Scholar
MacNeilage, P. R., Banks, M. S., DeAngelis, G. C. & Angelaki, D. E. (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. The Journal of Neuroscience 30:9084–94.Google Scholar
McIntyre, J., Zago, M., Berthoz, A. & Lacquaniti, F. (2001) Does the brain model Newton's laws? Nature Neuroscience 4:693–4.CrossRefGoogle ScholarPubMed
Mittelstaedt, H. (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–81.CrossRefGoogle Scholar
Schwabe, L. & Blanke, O. (2008) The vestibular component in out-of-body experiences: A computational approach. Frontiers in Human Neuroscience 2:17. Available at: http://www.frontiersin.org/human_neuroscience/10.3389/neuro.09.017.2008/abstract.CrossRefGoogle ScholarPubMed
Teufel, H. J., Nusseck, H.-G., Beykirch, K. A., Butler, J. S., Kerger, M. & Bülthoff, H. H. (2007) MPI motion simulator: Development and analysis of a novel motion simulator. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, South Carolina AIAA, 2007-6476. Available at: http://kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Teufel2007_4512%5B0%5D.pdf.Google Scholar
Wade, M. G. & Jones, G. (1997) The role of vision and spatial orientation in the maintenance of posture. Physical Therapy 77:619–28.Google Scholar